Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 76 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 113 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Learning Performance-Improving Code Edits (2302.07867v5)

Published 15 Feb 2023 in cs.SE, cs.AI, cs.LG, and cs.PF

Abstract: With the decline of Moore's law, optimizing program performance has become a major focus of software research. However, high-level optimizations such as API and algorithm changes remain elusive due to the difficulty of understanding the semantics of code. Simultaneously, pretrained LLMs have demonstrated strong capabilities at solving a wide range of programming tasks. To that end, we introduce a framework for adapting LLMs to high-level program optimization. First, we curate a dataset of performance-improving edits made by human programmers of over 77,000 competitive C++ programming submission pairs, accompanied by extensive unit tests. A major challenge is the significant variability of measuring performance on commodity hardware, which can lead to spurious "improvements." To isolate and reliably evaluate the impact of program optimizations, we design an environment based on the gem5 full system simulator, the de facto simulator used in academia and industry. Next, we propose a broad range of adaptation strategies for code optimization; for prompting, these include retrieval-based few-shot prompting and chain-of-thought, and for finetuning, these include performance-conditioned generation and synthetic data augmentation based on self-play. A combination of these techniques achieves a mean speedup of 6.86 with eight generations, higher than average optimizations from individual programmers (3.66). Using our model's fastest generations, we set a new upper limit on the fastest speedup possible for our dataset at 9.64 compared to using the fastest human submissions available (9.56).

Citations (65)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: