Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Existence analysis for a reaction-diffusion Cahn-Hilliard-type system with degenerate mobility and singular potential modeling biofilm growth (2302.07765v2)

Published 15 Feb 2023 in math.AP

Abstract: The global existence of bounded weak solutions to a diffusion system modeling biofilm growth is proven. The equations consist of a reaction-diffusion equation for the substrate concentration and a fourth-order Cahn-Hilliard-type equation for the volume fraction of the biomass, considered in a bounded domain with no-flux boundary conditions. The main difficulties are coming from the degenerate diffusivity and mobility, the singular potential arising from a logarithmic free energy, and the nonlinear reaction rates. These issues are overcome by a truncation technique and a Browder-Minty trick to identify the weak limits of the reaction terms. The qualitative behavior of the solutions is illustrated by numerical experiments in one space dimension, using a BDF2 (second-order backward Differentiation Formula) finite-volume scheme.

Summary

We haven't generated a summary for this paper yet.