Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Small data nonlinear wave equation numerology: The role of asymptotics (2302.07312v1)

Published 14 Feb 2023 in math.AP

Abstract: Systems of wave equations may fail to be globally well posed, even for small initial data. Attempts to classify systems into well and ill-posed categories work by identifying structural properties of the equations that can work as indicators of well-posedness. The most famous of these are the null and weak null conditions. As noted by Keir, related formulations may fail to properly capture the effect of undifferentiated terms in systems of wave equations. We show that this is because null conditions are good for categorising behaviour close to null infinity, but not at timelike infinity. In this paper, we propose an alternative condition for semilinear equations that work for undifferentiated non-linearities as well. We illustrate the strength of this new condition by proving global well and ill-posedness statements for some systems of equation that are not critical according to the our classification. Furthermore, we given two examples of systems satisfying the weak null condition with global ill-posedness due to undifferentiated terms, thereby disproving the weak null conjecture as stated in [DP18].

Citations (1)

Summary

We haven't generated a summary for this paper yet.