Computing finite index congruences of finitely presented semigroups and monoids (2302.06295v3)
Abstract: In this paper we describe an algorithm for computing the left, right, or 2-sided congruences of a finitely presented semigroup or monoid with finitely many classes, and alternative algorithm when the finitely presented semigroup or monoid is finite. We compare the two algorithms presented to existing algorithms and implementations. The first algorithm is a generalization of Sims' low index subgroup algorithm for finding the congruences of a monoid. The second algorithm involves determining the distinct principal congruences, and then finding all of their possible joins. Variations of this algorithm have been suggested in numerous contexts by numerous authors. We show how to utilise the theory of relative Green's relations, and a version of Schreier's Lemma for monoids, to reduce the number of principal congruences that must be generated as the first step of this approach. Both of the algorithms described in this paper are implemented in the GAP package Semigroups, and the first algorithm is available in the C++ library libsemigroups and in its python bindings libsemigroups_pybind.
- “The stylic monoid” In Semigroup Forum 105.1 Springer ScienceBusiness Media LLC, 2022, pp. 1–45 DOI: 10.1007/s00233-022-10285-3
- João Araújo, Wolfram Bentz and Gracinda M.S. Gomes “Congruences on direct products of transformation and matrix monoids” In Semigroup Forum Springer Nature, 2018 DOI: 10.1007/s00233-018-9931-8
- “CREAM: a Package to Compute [Auto, Endo, Iso, Mono, Epi]-morphisms, Congruences, Divisors and More for Algebras of Type (2n,1n)superscript2𝑛superscript1𝑛(2^{n},1^{n})( 2 start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT , 1 start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT )”, 2022 eprint: arXiv:2202.00613
- Robert E. Arthur and N. Ruškuc “Presentations for Two Extensions of the Monoid of Order-Preserving Mappings on a Finite Chain” In Southeast Asian Bulletin of Mathematics 24.1 Springer ScienceBusiness Media LLC, 2000, pp. 1–7 DOI: 10.1007/s10012-000-0001-1
- Alex Bailey, Martin Finn-Sell and Robert Snocken “Subsemigroup, ideal and congruence growth of free semigroups” In Israel Journal of Mathematics 215.1, 2016, pp. 459–501 DOI: 10.1007/s11856-016-1384-8
- Matthew David George Kenworthy Brookes “Lattices of congruence relations for inverse semigroups”, 2020 URL: https://etheses.whiterose.ac.uk/29077/
- Andries E. Brouwer, Jan Draisma and Bart J. Frenk “Lossy Gossip and Composition of Metrics” In Discrete & Computational Geometry 53.4 Springer ScienceBusiness Media LLC, 2015, pp. 890–913 DOI: 10.1007/s00454-015-9666-1
- Alan J. Cain, Robert Gray and Nik Ruškuc “Green index in semigroups: generators, presentations, and automatic structures” In Semigroup Forum 85.3 Springer ScienceBusiness Media LLC, 2012, pp. 448–476 DOI: 10.1007/s00233-012-9406-2
- “Minimum degrees of finite rectangular bands, null semigroups, and variants of full transformation semigroups” In Combinatorial Theory 3.3 California Digital Library (CDL), 2023 DOI: 10.5070/c63362799
- “The Todd-Coxeter Algorithm for Semigroups and Monoids” arXiv, 2022 DOI: 10.48550/ARXIV.2203.11148
- “Introduction to Algorithms”, The MIT Press London, England: MIT Press, 2009
- “Semigroups with finitely generated universal left congruence” In Monatshefte für Mathematik 190.4 Springer ScienceBusiness Media LLC, 2019, pp. 689–724 DOI: 10.1007/s00605-019-01274-w
- “The monoids of orders eight, nine & ten” In Annals of Mathematics and Artificial Intelligence 56.1 Springer ScienceBusiness Media LLC, 2009, pp. 3–21 DOI: 10.1007/s10472-009-9140-y
- James East and James D. Mitchell “Transformation representations of diagram monoids” in preparation
- “Congruence lattices of ideals in categories and (partial) semigroups”, 2020 eprint: arXiv:2001.01909
- “Congruences on infinite partition and partial Brauer monoids”, 2018 eprint: arXiv:1809.07427
- “Classification of congruences of twisted partition monoids” In Advances in Mathematics 395 Elsevier BV, 2022, pp. 108097 DOI: 10.1016/j.aim.2021.108097
- “Properties of congruences of twisted partition monoids and their lattices” In Journal of the London Mathematical Society 106.1 Wiley, 2022, pp. 311–357 DOI: 10.1112/jlms.12574
- “Computing finite semigroups” In Journal of Symbolic Computation 92 Elsevier BV, 2019, pp. 110–155 DOI: 10.1016/j.jsc.2018.01.002
- “Congruence lattices of finite diagram monoids” In Advances in Mathematics 333 Elsevier BV, 2018, pp. 931–1003 DOI: 10.1016/j.aim.2018.05.016
- Vitor Hugo Fernandes “On the cyclic inverse monoid on a finite set”, 2022 eprint: arXiv:2211.02155
- Ralph Freese “Computing congruences efficiently” In Algebra universalis 59.3-4 Springer ScienceBusiness Media LLC, 2008, pp. 337–343 DOI: 10.1007/s00012-008-2073-1
- “Algorithms for computing finite semigroups” In Foundations of computational mathematics (Rio de Janeiro, 1997) Berlin: Springer, 1997, pp. 112–126
- Bernard A. Galler and Michael J. Fisher “An improved equivalence algorithm” In Communications of the ACM 7.5 Association for Computing Machinery (ACM), 1964, pp. 301–303 DOI: 10.1145/364099.364331
- “Classical Finite Transformation Semigroups” Springer London, 2009 DOI: 10.1007/978-1-84800-281-4
- “GAP – Groups, Algorithms, and Programming, Version 4.12.1”, 2022 The GAP Group URL: %5Curl%7Bhttps://www.gap-system.org%7D
- “Green index and finiteness conditions for semigroups” In Journal of Algebra 320.8 Elsevier BV, 2008, pp. 3145–3164 DOI: 10.1016/j.jalgebra.2008.07.008
- Peter M. Higgins “Combinatorial results for semigroups of order-preserving mappings” In Mathematical Proceedings of the Cambridge Philosophical Society 113.2 Cambridge University Press (CUP), 1993, pp. 281–296 DOI: 10.1017/s0305004100075964
- “Testing for isomorphism between finitely presented groups” In Groups, Combinatorics and Geometry, London Mathematical Society Lecture Note Series Cambridge University Press, 1992, pp. 459–475
- John E. Hopcroft and Richard M. Karp “A Linear Algorithm for Testing Equivalence of Finite Automata.”, 1971
- John M. Howie “Fundamentals of semigroup theory” Oxford Science Publications 12, London Mathematical Society Monographs. New Series New York: The Clarendon Press Oxford University Press, 1995, pp. x+351
- Alexander Hulpke “Calculating Subgroups with GAP” In Group Theory and Computation Springer Singapore, 2018, pp. 91–106 DOI: 10.1007/978-981-13-2047-7˙5
- Alexander Hulpke “Representing Subgroups of Finitely Presented Groups by Quotient Subgroups” In Experimental Mathematics 10.3 A K Peters, Ltd., 2001, pp. 369–382
- Andrzej Jura “Coset enumeration in a finitely presented semigroup” In Canad. Math. Bull. 21.1, 1978, pp. 37–46
- Andrzej Jura “Determining ideals of a given finite index in a finitely presented semigroup” In Demonstratio Mathematica 11.3 De Gruyter Open, 1978, pp. 813–828
- Andrzej Jura “Some remarks on non-existence of an algorithm for finding all ideals of a given finite index in a finitely presented semigroup” In Demonstratio Mathematica 13 De Gruyter Open, 1980, pp. 573–578
- “Stallings Foldings and Subgroups of Free Groups” In Journal of Algebra 248.2, 2002, pp. 608–668 DOI: 10.1006/jabr.2001.9033
- Mati Kilp, Ulrich Knauer and Alexander V. Mikhalev “Monoids, Acts and Categories: With Applications to Wreath Products and Graphs. A Handbook for Students and Researchers” DE GRUYTER, 2000 DOI: 10.1515/9783110812909
- Donald Knuth “The Art of Computer Programming: Combinatorial Algorithms, Volume 4B” Addison-Wesley Professional, 2022
- Donald E. Knuth “Permutations, matrices, and generalized Young tableaux” In Pacific J. Math. 34, 1970, pp. 709–727 URL: http://projecteuclid.org.ezproxy.st-andrews.ac.uk/euclid.pjm/1102971948
- “Le monoïde plaxique” In Noncommutative structures in algebra and geometric combinatorics (Naples, 1978) 109, Quad. “Ricerca Sci.” CNR, Rome, 1981, pp. 129–156
- “Groups and actions in transformation semigroups” In Mathematische Zeitschrift 228.3 Springer ScienceBusiness Media LLC, 1998, pp. 435–450 DOI: 10.1007/pl00004628
- Anatolii Ivanovich Mal’tsev “Symmetric groupoids” In Matematicheskii sbornik 73.1 Russian Academy of Sciences, Steklov Mathematical Institute of Russian …, 1952, pp. 136–151
- Victor Maltcev “On a new approach to the dual symmetric inverse monoid ℐX*superscriptsubscriptℐ𝑋\mathscr{I}_{X}^{*}script_I start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT” In Internat. J. Algebra Comput. 17.3, 2007, pp. 567–591 DOI: 10.1142/S0218196707003792
- “On the minimal faithful degree of Rhodes semisimple semigroups” In Journal of Algebra 633 Elsevier BV, 2023, pp. 788–813 DOI: 10.1016/j.jalgebra.2023.06.032
- J.C.C. McKinsey “The Decision Problem for Some Classes of Sentences Without Quantifiers” In The Journal of Symbolic Logic 8.2 Association for Symbolic Logic, 1943, pp. 61–76 URL: http://www.jstor.org/stable/2268172
- John Meakin “One-sided congruences on inverse semigroups” In Transactions of the American Mathematical Society 206 American Mathematical Society (AMS), 1975, pp. 67–67 DOI: 10.1090/s0002-9947-1975-0369580-9
- James Mitchell and Chinmaya Nagpal and Maria Tsalakou “libsemigroups_pybind11 v0.4.3” Zenodo, 2022 DOI: 10.5281/ZENODO.7307278
- “libsemigroups v2.7.1” Zenodo, 2023 DOI: 10.5281/zenodo.1437752
- “Semigroups v5.2.1” Zenodo, 2023 DOI: 10.5281/zenodo.592893
- J. Neubüser “An elementary introduction to coset table methods in computational group theory” In Groups - St Andrews 1981, London Mathematical Society Lecture Notes Series Cambridge University Press, 1982, pp. 1–45 DOI: 10.1017/CBO9780511661884.004
- Daphne Norton “Algorithms for testing equivalence of finite automata, with a grading tool for JFLAP”, 2009
- OEIS Foundation Inc. “The On-Line Encyclopedia of Integer Sequences” Published electronically at http://oeis.org, 2024
- Rui Barradas Pereira “The CREAM GAP Package - Algebra CongRuences, Endomorphisms and AutomorphisMs”, 2022 URL: https://gitlab.com/rmbper/cream
- Emmanuel Rauzy “Computability of finite quotients of finitely generated groups” In Journal of Group Theory 25.2 Walter de Gruyter GmbH, 2021, pp. 217–246 DOI: 10.1515/jgth-2020-0029
- “Syntactic and Rees Indices of Subsemigroups” In Journal of Algebra 205.2, 1998, pp. 435–450 DOI: https://doi.org/10.1006/jabr.1997.7392
- Nikola Ruškuc “Semigroup presentations”, 1995
- Boris M. Schein “The Minimal Degree of a Finite Inverse Semigroup” In Transactions of the American Mathematical Society 333.2 American Mathematical Society, 1992, pp. 877–888 URL: http://www.jstor.org/stable/2154068
- Ákos Seress “Permutation group algorithms” 152, Cambridge Tracts in Mathematics Cambridge: Cambridge University Press, 2003, pp. x+264 DOI: 10.1017/CBO9780511546549
- Charles C. Sims “Computation with Finitely Presented Groups”, Encyclopedia of Mathematics and its Applications Cambridge University Press, 1994 DOI: 10.1017/CBO9780511574702
- Charles C. Sims “Computation with permutation groups” In Proceedings of the second ACM symposium on Symbolic and algebraic manipulation - SYMSAC ’71 ACM Press, 1971 DOI: 10.1145/800204.806264
- Charles C. Sims “Computational methods in the study of permutation groups” In Computational Problems in Abstract Algebra Elsevier, 1970, pp. 169–183 DOI: 10.1016/b978-0-08-012975-4.50020-5
- Michael Sipser “Introduction to the Theory of Computation” Boston, MA: Course Technology, 2013
- “A practical method for enumerating cosets of a finite abstract group” In Proceedings of the Edinburgh Mathematical Society 5.01 Cambridge University Press (CUP), 1936, pp. 26–34 DOI: 10.1017/s0013091500008221
- Michael Torpey “Semigroup congruences : computational techniques and theoretical applications” University of St Andrews, 2019 DOI: 10.17630/10023-17350
- E.J. Tully “Representation of a semigroup by transformations acting transitively on a set” In Amer. J. Math. 83, 1961, pp. 533–541
- A. Wallace “Relative ideals in semigroups, I (Faucett’s Theorem)” In Colloquium Mathematicum 9.1 Institute of Mathematics, Polish Academy of Sciences, 1962, pp. 55–61 DOI: 10.4064/cm-9-1-55-61
- A.D. Wallace “Relative Ideals in Semigroups. II” In Acta Mathematica Academiae Scientiarum Hungaricae 14.1-2 Springer ScienceBusiness Media LLC, 1963, pp. 137–148 DOI: 10.1007/bf01901936
- Anthony Williams “C++ Concurrency in Action, 2E” New York, NY: Manning Publications, 2019