Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Boosted ab initio Cryo-EM 3D Reconstruction with ACE-EM (2302.06091v2)

Published 13 Feb 2023 in cs.CV, cs.AI, cs.LG, q-bio.BM, and q-bio.QM

Abstract: The central problem in cryo-electron microscopy (cryo-EM) is to recover the 3D structure from noisy 2D projection images which requires estimating the missing projection angles (poses). Recent methods attempted to solve the 3D reconstruction problem with the autoencoder architecture, which suffers from the latent vector space sampling problem and frequently produces suboptimal pose inferences and inferior 3D reconstructions. Here we present an improved autoencoder architecture called ACE (Asymmetric Complementary autoEncoder), based on which we designed the ACE-EM method for cryo-EM 3D reconstructions. Compared to previous methods, ACE-EM reached higher pose space coverage within the same training time and boosted the reconstruction performance regardless of the choice of decoders. With this method, the Nyquist resolution (highest possible resolution) was reached for 3D reconstructions of both simulated and experimental cryo-EM datasets. Furthermore, ACE-EM is the only amortized inference method that reached the Nyquist resolution.

Citations (1)

Summary

We haven't generated a summary for this paper yet.