Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Near-Optimal Non-Convex Stochastic Optimization under Generalized Smoothness (2302.06032v2)

Published 13 Feb 2023 in cs.LG and math.OC

Abstract: The generalized smooth condition, $(L_{0},L_{1})$-smoothness, has triggered people's interest since it is more realistic in many optimization problems shown by both empirical and theoretical evidence. Two recent works established the $O(\epsilon{-3})$ sample complexity to obtain an $O(\epsilon)$-stationary point. However, both require a large batch size on the order of $\mathrm{ploy}(\epsilon{-1})$, which is not only computationally burdensome but also unsuitable for streaming applications. Additionally, these existing convergence bounds are established only for the expected rate, which is inadequate as they do not supply a useful performance guarantee on a single run. In this work, we solve the prior two problems simultaneously by revisiting a simple variant of the STORM algorithm. Specifically, under the $(L_{0},L_{1})$-smoothness and affine-type noises, we establish the first near-optimal $O(\log(1/(\delta\epsilon))\epsilon{-3})$ high-probability sample complexity where $\delta\in(0,1)$ is the failure probability. Besides, for the same algorithm, we also recover the optimal $O(\epsilon{-3})$ sample complexity for the expected convergence with improved dependence on the problem-dependent parameter. More importantly, our convergence results only require a constant batch size in contrast to the previous works.

Citations (2)

Summary

We haven't generated a summary for this paper yet.