Papers
Topics
Authors
Recent
Search
2000 character limit reached

Computing Truncated Metric Dimension of Trees

Published 12 Feb 2023 in cs.DS | (2302.05960v1)

Abstract: Let $G=(V,E)$ be a simple, unweighted, connected graph. Let $d(u,v)$ denote the distance between vertices $u,v$. A resolving set of $G$ is a subset $S$ of $V$ such that knowing the distance from a vertex $v$ to every vertex in $S$ uniquely identifies $v$. The metric dimension of $G$ is defined as the size of the smallest resolving set of $G$. We define the $k$-truncated resolving set and $k$-truncated metric dimension of a graph similarly, but with the notion of distance replaced with $d_k(u,v) := \min(d(u,v),k+1)$. In this paper, we demonstrate that computing $k$-truncated dimension of trees is NP-Hard for general $k$. We then present a polynomial-time algorithm to compute $k$-truncated dimension of trees when $k$ is a fixed constant.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.