Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Digging Deeper: Operator Analysis for Optimizing Nonlinearity of Boolean Functions (2302.05890v1)

Published 12 Feb 2023 in cs.NE and cs.CR

Abstract: Boolean functions are mathematical objects with numerous applications in domains like coding theory, cryptography, and telecommunications. Finding Boolean functions with specific properties is a complex combinatorial optimization problem where the search space grows super-exponentially with the number of input variables. One common property of interest is the nonlinearity of Boolean functions. Constructing highly nonlinear Boolean functions is difficult as it is not always known what nonlinearity values can be reached in practice. In this paper, we investigate the effects of the genetic operators for bit-string encoding in optimizing nonlinearity. While several mutation and crossover operators have commonly been used, the link between the genotype they operate on and the resulting phenotype changes is mostly obscure. By observing the range of possible changes an operator can provide, as well as relative probabilities of specific transitions in the objective space, one can use this information to design a more effective combination of genetic operators. The analysis reveals interesting insights into operator effectiveness and indicates how algorithm design may improve convergence compared to an operator-agnostic genetic algorithm.

Citations (1)

Summary

We haven't generated a summary for this paper yet.