Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Partial k-means to avoid outliers, mathematical programming formulations, complexity results (2302.05644v3)

Published 11 Feb 2023 in cs.CC, cs.CG, and cs.DM

Abstract: A well-known bottleneck of Min-Sum-of-Square Clustering (MSSC, the celebrated $k$-means problem) is to tackle the presence of outliers. In this paper, we propose a Partial clustering variant termed PMSSC which considers a fixed number of outliers to remove. We solve PMSSC by Integer Programming formulations and complexity results extending the ones from MSSC are studied. PMSSC is NP-hard in Euclidean space when the dimension or the number of clusters is greater than $2$. Finally, one-dimensional cases are studied: Unweighted PMSSC is polynomial in that case and solved with a dynamic programming algorithm, extending the optimality property of MSSC with interval clustering. This result holds also for unweighted $k$-medoids with outliers. A weaker optimality property holds for weighted PMSSC, but NP-hardness or not remains an open question in dimension one.

Citations (1)

Summary

We haven't generated a summary for this paper yet.