Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A variational theory for integral functionals involving finite-horizon fractional gradients (2302.05569v3)

Published 11 Feb 2023 in math.AP, math.FA, and math.OC

Abstract: The center of interest in this work are variational problems with integral functionals depending on special nonlocal gradients. The latter correspond to truncated versions of the Riesz fractional gradient, as introduced in [Bellido, Cueto & Mora-Corral 2022] along with the underlying function spaces. We contribute several new aspects to both the existence theory of these problems and the study of their asymptotic behavior. Our overall proof strategy builds on finding suitable translation operators that allow to switch between the three types of gradients: classical, fractional, and nonlocal. These provide useful technical tools for transferring results from one setting to the other. Based on this approach, we show that quasiconvexity, which is the natural convexity notion in the classical -- and as shown in [Kreisbeck & Sch\"onberger 2022] also in the fractional -- calculus of variations, gives a necessary and sufficient condition for the weak lower semicontinuity of the nonlocal functionals as well. As a consequence of a general Gamma-convergence statement, we obtain relaxation and homogenization results. The analysis of the limiting behavior for varying fractional parameters yields, in particular, a rigorous localization with a classical local limit model.

Citations (11)

Summary

We haven't generated a summary for this paper yet.