Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Neural Networks vs. Splines: Advances in Numerical Extruder Design (2302.04998v1)

Published 10 Feb 2023 in cs.CE

Abstract: We present a novel application of neural networks to design improved mixing elements for single-screw extruders. Specifically, we propose to use neural networks in numerical shape optimization to parameterize geometries. Geometry parameterization is crucial in enabling efficient shape optimization as it allows for optimizing complex shapes using only a few design variables. Recent approaches often utilize CAD data in conjunction with spline-based methods where the spline's control points serve as design variables. Consequently, these approaches rely on the same design variables as specified by the human designer. While this choice is convenient, it either restricts the design to small modifications of given, initial design features - effectively prohibiting topological changes - or yields undesirably many design variables. In this work, we step away from CAD and spline-based approaches and construct an artificial, feature-dense yet low-dimensional optimization space using a generative neural network. Using the neural network for the geometry parameterization extends state-of-the-art methods in that the resulting design space is not restricted to user-prescribed modifications of certain basis shapes. Instead, within the same optimization space, we can interpolate between and explore seemingly unrelated designs. To show the performance of this new approach, we integrate the developed shape parameterization into our numerical design framework for dynamic mixing elements in plastics extrusion. Finally, we challenge the novel method in a competitive setting against current free-form deformation-based approaches and demonstrate the method's performance even at this early stage.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Jaewook Lee (44 papers)
  2. Sebastian Hube (3 papers)
  3. Stefanie Elgeti (26 papers)