Papers
Topics
Authors
Recent
2000 character limit reached

Mathematical Model of Quantum Channel Capacity

Published 9 Feb 2023 in cs.IT, eess.SP, and math.IT | (2302.04873v2)

Abstract: In this article, we are proposing a closed-form solution for the capacity of the single quantum channel. The Gaussian distributed input has been considered for the analytical calculation of the capacity. In our previous couple of papers, we invoked models for joint quantum noise and the corresponding received signals; in this current research, we proved that these models are Gaussian mixtures distributions. In this paper, we showed how to deal with both of cases, namely (I)the Gaussian mixtures distribution for scalar variables and (II) the Gaussian mixtures distribution for random vectors. Our target is to calculate the entropy of the joint noise and the entropy of the received signal in order to calculate the capacity expression of the quantum channel. The main challenge is to work with the function type of the Gaussian mixture distribution. The entropy of the Gaussian mixture distributions cannot be calculated in the closed-form solution due to the logarithm of a sum of exponential functions. As a solution, we proposed a lower bound and a upper bound for each of the entropies of joint noise and the received signal, and finally upper inequality and lower inequality lead to the upper bound for the mutual information and hence the maximum achievable data rate as the capacity. In this paper reader will able to visualize an closed-form capacity experssion which make this paper distinct from our previous works. These capacity experssion and coresses ponding bounds are calculated for both the cases: the Gaussian mixtures distribution for scalar variables and the Gaussian mixtures distribution for random vectors as well.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.