Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An extended Gauss-Newton method for full waveform inversion (2302.04124v2)

Published 8 Feb 2023 in physics.geo-ph, cs.NA, math.NA, and math.OC

Abstract: Full waveform inversion (FWI) is a large-scale nonlinear ill-posed problem for which computationally expensive Newton-type methods can become trapped in undesirable local minima, particularly when the initial model lacks a low-wavenumber component and the recorded data lacks low-frequency content. A modification to the Gauss-Newton (GN) method is proposed to address these issues. The standard GN system for multisource multireceiver FWI is reformulated into an equivalent matrix equation form, with the solution becoming a diagonal matrix rather than a vector as in the standard system. The search direction is transformed from a vector to a matrix by relaxing the diagonality constraint, effectively adding a degree of freedom to the subsurface offset axis. The relaxed system can be explicitly solved with only the inversion of two small matrices that deblur the data residual matrix along the source and receiver dimensions, which simplifies the inversion of the Hessian matrix. When used to solve the extended source FWI objective function, the Extended GN (EGN) method integrates the benefits of both model and source extension. The EGN method effectively combines the computational effectiveness of the reduced FWI method with the robustness characteristics of extended formulations and offers a promising solution for addressing the challenges of FWI. It bridges the gap between these extended formulations and the reduced FWI method, enhancing inversion robustness while maintaining computational efficiency. The robustness and stability of the EGN algorithm for waveform inversion are demonstrated numerically.

Summary

We haven't generated a summary for this paper yet.