Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Solving the Parametric Eigenvalue Problem by Taylor Series and Chebyshev Expansion (2302.03661v1)

Published 7 Feb 2023 in math.NA and cs.NA

Abstract: We discuss two approaches to solving the parametric (or stochastic) eigenvalue problem. One of them uses a Taylor expansion and the other a Chebyshev expansion. The parametric eigenvalue problem assumes that the matrix $A$ depends on a parameter $\mu$, where $\mu$ might be a random variable. Consequently, the eigenvalues and eigenvectors are also functions of $\mu$. We compute a Taylor approximation of these functions about $\mu_{0}$ by iteratively computing the Taylor coefficients. The complexity of this approach is $O(n{3})$ for all eigenpairs, if the derivatives of $A(\mu)$ at $\mu_{0}$ are given. The Chebyshev expansion works similarly. We first find an initial approximation iteratively which we then refine with Newton's method. This second method is more expensive but provides a good approximation over the whole interval of the expansion instead around a single point. We present numerical experiments confirming the complexity and demonstrating that the approaches are capable of tracking eigenvalues at intersection points. Further experiments shed light on the limitations of the Taylor expansion approach with respect to the distance from the expansion point $\mu_{0}$.

Citations (1)

Summary

We haven't generated a summary for this paper yet.