Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards Flexible Biolaboratory Automation: Container Taxonomy-Based, 3D-Printed Gripper Fingers (2302.03644v2)

Published 7 Feb 2023 in cs.RO

Abstract: Automation in the life science research laboratory is a paradigm that has gained increasing relevance in recent years. Current robotic solutions often have a limited scope, which reduces their acceptance and prevents the realization of complex workflows. The transport and manipulation of laboratory supplies with a robot is a particular case where this limitation manifests. In this paper, we deduce a taxonomy of biolaboratory liquid containers that clarifies the need for a flexible grasping solution. Using the taxonomy as a guideline, we design fingers for a parallel robotic gripper which are developed with a monolithic dual-extrusion 3D print that integrates rigid and soft materials to optimize gripping properties. We design fine-tuned fingertips that provide stable grasps of the containers in question. A simple actuation system and a low weight are maintained by adopting a passive compliant mechanism. The ability to resist chemicals and high temperatures and the integration with a tool exchange system render the fingers usable for daily laboratory use and complex workflows. We present the task suitability of the fingers in experiments that show the wide range of vessels that can be handled as well as their tolerance against displacements and their grasp stability.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (24)
  1. J. Nowakowska, J. Sobocińska, M. Lewicki, Z. Lemańska, and P. Rzymski, “When science goes viral: The research response during three months of the COVID-19 outbreak,” Biomedicine & Pharmacotherapy, vol. 129, p. 110451, 9 2020, doi:10.1016/j.biopha.2020.110451.
  2. P. Courtney and P. G. Royall, “Using robotics in laboratories during the covid-19 outbreak: A review,” IEEE Robotics & Automation Magazine, vol. 28, pp. 28–39, 3 2021, doi:10.1109/MRA.2020.3045067.
  3. I. Holland and J. A. Davies, “Automation in the life science research laboratory,” Frontiers in Bioengineering and Biotechnology, vol. 8, 11 2020, doi:10.3389/fbioe.2020.571777.
  4. F. Kong, L. Yuan, Y. F. Zheng, and W. Chen, “Automatic liquid handling for life science,” Journal of Laboratory Automation, vol. 17, pp. 169–185, 6 2012, doi:10.1177/2211068211435302.
  5. K. M. Elkins, “DNA extraction,” Forensic DNA Biology, pp. 39–52, 1 2013, doi:10.1016/B978-0-12-394585-3.00004-3.
  6. R. Lehmann, J. Severitt, T. Roddelkopf, S. Junginger, and K. Thurow, “Biomek cell workstation: A variable system for automated cell cultivation,” SLAS Technology, vol. 21, pp. 439–450, 6 2016, doi:10.1177/2211068215599786.
  7. B. Burger et al., “A mobile robotic chemist,” Nature, vol. 583, pp. 237–241, 7 2020, doi:10.1038/s41586-020-2442-2.
  8. H. Fleischer et al., “Application of a dual-arm robot in complex sample preparation and measurement processes,” SLAS Technology, vol. 21, pp. 671–681, 10 2016, doi:10.1177/2211068216637352.
  9. C. Piazza, G. Grioli, M. Catalano, and A. Bicchi, “A century of robotic hands,” Annual Review of Control, Robotics, and Autonomous Systems, vol. 2, pp. 1–32, 5 2019, doi:10.1146/annurev-control-060117-105003.
  10. B. He, S. Wang, and Y. Liu, “Underactuated robotics: A review,” International Journal of Advanced Robotic Systems, vol. 16, 7 2019, doi:10.1177/1729881419862164.
  11. L. Birglen, “Enhancing versatility and safety of industrial grippers with adaptive robotic fingers,” 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2911–2916, 2015, doi:10.1109/IROS.2015.7353778.
  12. H. Park and D. Kim, “An open-source anthropomorphic robot hand system: HRI hand,” HardwareX, vol. 7, p. e00100, 4 2020, doi:10.1016/j.ohx.2020.e00100.
  13. J. Shintake, V. Cacucciolo, D. Floreano, and H. Shea, “Soft robotic grippers,” Advanced Materials, vol. 30, p. 1707035, 7 2018, doi:10.1002/adma.201707035.
  14. W. Crooks, G. Vukasin, M. O’Sullivan, W. Messner, and C. Rogers, “Fin Ray® effect inspired soft robotic gripper: From the RoboSoft Grand Challenge toward optimization,” Frontiers in Robotics and AI, vol. 3, p. 70, 11 2016, doi:10.3389/frobt.2016.00070.
  15. I. Hussain et al., “Design and prototyping soft–rigid tendon-driven modular grippers using interpenetrating phase composites materials,” International Journal of Robotics Research, vol. 39, pp. 1635–1646, 12 2020, doi:10.1177/0278364920907697.
  16. U. Culha, J. Hughes, A. Rosendo, F. Giardina, and F. Iida, “Design principles for soft-rigid hybrid manipulators,” Biosystems and Biorobotics, vol. 17, pp. 87–94, 2017, doi:10.1007/978-3-319-46460-2_11.
  17. A. Lavrentieva, “Essentials in Cell Culture,” Cell Culture Technology, pp. 23–48, 2018, doi:10.1007/978-3-319-74854-2_2.
  18. ANSI / SLAS, “ANSI SLAS 1-2004 (R2012) - Footprint dimensions for microplates,” 2011, last retrieved February 13, 2023. [Online]. Available: https://www.slas.org/SLAS/assets/File/public/standards/ANSI_SLAS_1-2004_FootprintDimensions.pdf
  19. ——, “ANSI SLAS 3-2004 (R2012) - Bottom outside flange dimensions,” 2011, last retrieved February 13, 2023. [Online]. Available: https://www.slas.org/SLAS/assets/File/public/standards/ANSI_SLAS_3-2004_BottomOutsideFlangeDimensions.pdf
  20. M. R. Cutkosky, “On grasp choice, grasp models, and the design of hands for manufacturing tasks,” IEEE Transactions on Robotics and Automation, vol. 5, pp. 269–279, 1989, doi:10.1109/70.34763.
  21. S. Haddadin et al., “The Franka Emika robot: A reference platform for robotics research and education,” IEEE Robotics and Automation Magazine, vol. 29, pp. 46–64, 6 2022, doi:10.1109/MRA.2021.3138382.
  22. J. Ringwald et al., “Towards task-specific modular gripper fingers: Automatic production of fingertip mechanics,” IEEE Robotics and Automation Letters, pp. 1–8, 2023, doi:10.1109/LRA.2023.3241757.
  23. J. W. Jaeger et al., “Automated device for uncapping multiple-size bioanalytical sample tubes designed to reduce technician strain and increase productivity,” SLAS Technology, vol. 26, pp. 320–326, 6 2021, doi:10.1177/2472630320967622.
  24. D. Knobbe, H. Zwirnmann, M. Eckhoff, and S. Haddadin, “Core processes in intelligent robotic lab assistants: Flexible liquid handling,” 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2335–2342, 2022, doi:10.1109/IROS47612.2022.9981636.
Citations (2)

Summary

We haven't generated a summary for this paper yet.