Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Extremal graphs for the odd prism (2302.03278v2)

Published 7 Feb 2023 in math.CO

Abstract: The Tur\'an number $\mathrm{ex}(n,H)$ of a graph $H$ is the maximum number of edges in an $n$-vertex graph which does not contain $H$ as a subgraph. The Tur\'{a}n number of regular polyhedrons was widely studied in a series of works due to Simonovits. In this paper, we shall present the exact Tur\'{a}n number of the prism $C_{2k+1}{\square} $, which is defined as the Cartesian product of an odd cycle $C_{2k+1}$ and an edge $ K_2 $. Applying a deep theorem of Simonovits and a stability result of Yuan [European J. Combin. 104 (2022)], we shall determine the exact value of $\mathrm{ex}(n,C_{2k+1}{\square})$ for every $k\ge 1$ and sufficiently large $n$, and we also characterize the extremal graphs. Moreover, in the case of $k=1$, motivated by a recent result of Xiao, Katona, Xiao and Zamora [Discrete Appl. Math. 307 (2022)], we will determine the exact value of $\mathrm{ex}(n,C_{3}{\square} )$ for every $n$ instead of for sufficiently large $n$.

Citations (2)

Summary

We haven't generated a summary for this paper yet.