Generative models for two-ground-truth partitions in networks (2302.02787v3)
Abstract: A myriad of approaches have been proposed to characterise the mesoscale structure of networks - most often as a partition based on patterns variously called communities, blocks, or clusters. Clearly, distinct methods designed to detect different types of patterns may provide a variety of answers to the network's mesoscale structure. Yet, even multiple runs of a given method can sometimes yield diverse and conflicting results, producing entire landscapes of partitions which potentially include multiple (locally optimal) mesoscale explanations of the network. Such ambiguity motivates a closer look at the ability of these methods to find multiple qualitatively different 'ground truth' partitions in a network. Here, we propose the stochastic cross-block model (SCBM), a generative model which allows for two distinct partitions to be built into the mesoscale structure of a single benchmark network. We demonstrate a use case of the benchmark model by appraising the power of stochastic block models (SBMs) to detect implicitly planted coexisting bi-community and core-periphery structures of different strengths. Given our model design and experimental set-up, we find that the ability to detect the two partitions individually varies by SBM variant and that coexistence of both partitions is recovered only in a very limited number of cases. Our findings suggest that in most instances only one - in some way dominating - structure can be detected, even in the presence of other partitions. They underline the need for considering entire landscapes of partitions when different competing explanations exist and motivate future research to advance partition coexistence detection methods. Our model also contributes to the field of benchmark networks more generally by enabling further exploration of the ability of new and existing methods to detect ambiguity in the mesoscale structure of networks.
- X. Zhang, T. Martin, and M. E. J. Newman, Physical Review E 91, 032803 (2015).
- W. W. Zachary, Journal of Anthropological Research 33, 452 (1977).
- M. E. J. Newman and M. Girvan, Physical Review E 69, 026113 (2004).
- M. E. J. Newman, Proceedings of the National Academy of Sciences 103, 8577 (2006).
- J. Duch and A. Arenas, Physical Review E 72, 027104 (2005).
- T. S. Evans, Journal of Statistical Mechanics: Theory and Experiment 2010, P12037 (2010).
- T. P. Peixoto, Physical Review X 11, 021003 (2021).
- L. Peel, D. B. Larremore, and A. Clauset, Science Advances 3, e1602548 (2017).
- A. Condon and R. M. Karp, Random Structures & Algorithms 18, 116 (2001).
- R. D. Alba, Journal of Mathematical Sociology 3, 113 (1973).
- S. Fortunato, Physics Reports 486, 75 (2010).
- M. E. J. Newman, Physical Review E 88, 042822 (2013).
- B. Karrer and M. E. J. Newman, Physical Review E 83, 016107 (2011).
- M. Rosvall and C. T. Bergstrom, Proceedings of the National Academy of Sciences 105, 1118 (2008).
- S. P. Borgatti and M. G. Everett, Social networks 21, 375 (2000).
- P. Holme, Physical Review E 72, 046111 (2005).
- S. H. Lee, M. Cucuringu, and M. A. Porter, Physical Review E 89, 032810 (2014).
- R. J. Gallagher, J.-G. Young, and B. F. Welles, Science Advances 7, eabc9800 (2021).
- B. Yan and J. Luo, Network Science 7, 70 (2019).
- B. Tunç and R. Verma, PloS one 10, e0143133 (2015).
- S. Kojaku and N. Masuda, Physical Review E 96, 052313 (2017).
- R. D. Luce and A. D. Perry, Psychometrika 14, 95 (1949).
- S. B. Seidman, Social networks 5, 269 (1983).
- R. L. Breiger, S. A. Boorman, and P. Arabie, Journal of mathematical psychology 12, 328 (1975).
- M. Girvan and M. E. Newman, Proceedings of the national academy of sciences 99, 7821 (2002).
- P. W. Holland, K. B. Laskey, and S. Leinhardt, Social Networks 5, 109 (1983).
- T. P. Peixoto, Physical Review E 95, 012317 (2017).
- A. Lancichinetti and S. Fortunato, Scientific reports 2, 1 (2012).
- A. Kirkley and M. E. J. Newman, Communications Physics 5, 1 (2022).
- E. Abbe, The Journal of Machine Learning Research 18, 6446 (2017).
- J. Reichardt and M. Leone, Physical review letters 101, 078701 (2008).
- R. R. Nadakuditi and M. E. J. Newman, Physical Review Letters 108, 188701 (2012).
- X. Zhang, R. R. Nadakuditi, and M. E. J. Newman, Physical Review E 89, 042816 (2014).
- F. Radicchi, Physical Review E 88, 010801 (2013).
- F. Lorrain and H. C. White, The Journal of mathematical sociology 1, 49 (1971).
- H. C. White, S. A. Boorman, and R. L. Breiger, American journal of sociology 81, 730 (1976).
- M. G. Everett and S. P. Borgatti, Journal of mathematical sociology 19, 29 (1994).
- M. B. Hastings, Physical Review E 74, 035102 (2006).
- T. P. Peixoto, Physical Review X 4, 011047 (2014a).
- T. P. Peixoto, Physical Review X 5, 011033 (2015a).
- T. P. Peixoto, Physical Review E 92, 042807 (2015b).
- A. Lancichinetti and S. Fortunato, Physical Review E 80, 056117 (2009).
- J. Lin, IEEE Transactions on Information theory 37, 145 (1991).
- T. P. Peixoto, figshare 10.6084/m9.figshare.1164194 (2014b).
- H. W. Kuhn, Naval research logistics quarterly 2, 83 (1955).
- J. Munkres, Journal of the society for industrial and applied mathematics 5, 32 (1957).
- S. Wagner and D. Wagner, Comparing Clusterings - An Overview, https://publikationen.bibliothek.kit.edu/1000011477 (2007).
- M. E. Newman, G. T. Cantwell, and J.-G. Young, Physical Review E 101, 042304 (2020).
- M. Meilă, Journal of multivariate analysis 98, 873 (2007).
- T. P. Peixoto, Physical Review X 12, 011004 (2022).
- L. Zhang and T. P. Peixoto, Physical Review Research 2, 043271 (2020).
- T. P. Peixoto, Physical review letters 110, 148701 (2013).
- P. Ramaciotti Morales, in Complex Networks and Their Applications XI (Springer International Publishing, Cham, 2023) pp. 176–189.
- C. L. Lawson and R. J. Hanson, Solving least squares problems (SIAM, 1995).
- G. Dantzig, Linear programming and extensions (Princeton university press, 1963).
- Q. Huangfu and J. J. Hall, Mathematical Programming Computation 10, 119 (2018).
- J. Farkas, Journal für die reine und angewandte Mathematik (Crelles Journal) 1902, 1 (1902).
- S. Boyd, S. P. Boyd, and L. Vandenberghe, Convex Optimization (Cambridge university press, 2004).