Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Transformers in Action Recognition: A Review on Temporal Modeling (2302.01921v1)

Published 29 Dec 2022 in cs.CV, cs.AI, and cs.LG

Abstract: In vision-based action recognition, spatio-temporal features from different modalities are used for recognizing activities. Temporal modeling is a long challenge of action recognition. However, there are limited methods such as pre-computed motion features, three-dimensional (3D) filters, and recurrent neural networks (RNN) for modeling motion information in deep-based approaches. Recently, transformers success in modeling long-range dependencies in NLP tasks has gotten great attention from other domains; including speech, image, and video, to rely entirely on self-attention without using sequence-aligned RNNs or convolutions. Although the application of transformers to action recognition is relatively new, the amount of research proposed on this topic within the last few years is astounding. This paper especially reviews recent progress in deep learning methods for modeling temporal variations. It focuses on action recognition methods that use transformers for temporal modeling, discussing their main features, used modalities, and identifying opportunities and challenges for future research.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
Citations (7)