Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Error analysis for a Crouzeix-Raviart approximation of the obstacle problem (2302.01646v2)

Published 3 Feb 2023 in math.NA and cs.NA

Abstract: In the present paper, we study a Crouzeix-Raviart approximation of the obstacle problem, which imposes the obstacle constraint in the midpoints (i.e., barycenters) of the elements of a triangulation. We establish a priori error estimates imposing natural regularity assumptions, which are optimal, and the reliability and efficiency of a primal-dual type a posteriori error estimator for general obstacles and involving data oscillation terms stemming only from the right-hand side. Numerical experiments are carried out to support the theoretical findings.

Citations (3)

Summary

We haven't generated a summary for this paper yet.