Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Carnot rectifiability and Alberti representations (2302.01376v2)

Published 2 Feb 2023 in math.MG and math.CA

Abstract: A metric measure space is said to be Carnot-rectifiable if it can be covered up to a null set by countably many biLipschitz images of compact sets of a fixed Carnot group. In this paper, we give several characterisations of such notion of rectifiability both in terms of Alberti representations of the measure and in terms of differentiability of Lipschitz maps with values in Carnot groups. In order to obtain this characterisation, we develop and study the analogue of the notion of Lipschitz differentiability space by Cheeger, using Carnot groups and Pansu derivatives as models. We call such metric measure spaces Pansu differentiability spaces (PDS).

Citations (1)

Summary

We haven't generated a summary for this paper yet.