Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

New Constructions of Optimal Binary LCD Codes (2302.00906v2)

Published 2 Feb 2023 in cs.IT and math.IT

Abstract: Linear complementary dual (LCD) codes can provide an optimum linear coding solution for the two-user binary adder channel. LCD codes also can be used to against side-channel attacks and fault non-invasive attacks. Let $d_{LCD}(n, k)$ denote the maximum value of $d$ for which a binary $[n,k, d]$ LCD code exists. In \cite{BS21}, Bouyuklieva conjectured that $d_{LCD}(n+1, k)=d_{LCD}(n, k)$ or $d_{LCD}(n, k) + 1$ for any lenth $n$ and dimension $k \ge 2$. In this paper, we first prove Bouyuklieva's conjecture \cite{BS21} by constructing a binary $[n,k,d-1]$ LCD codes from a binary $[n+1,k,d]$ $LCD_{o,e}$ code, when $d \ge 3$ and $k \ge 2$. Then we provide a distance lower bound for binary LCD codes by expanded codes, and use this bound and some methods such as puncturing, shortening, expanding and extension, we construct some new binary LCD codes. Finally, we improve some previously known values of $d_{LCD}(n, k)$ of lengths $38 \le n \le 40$ and dimensions $9 \le k \le 15$. We also obtain some values of $d_{LCD}(n, k)$ with $41 \le n \le 50$ and $6 \le k \le n-6$.

Citations (3)

Summary

We haven't generated a summary for this paper yet.