Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Model Monitoring and Robustness of In-Use Machine Learning Models: Quantifying Data Distribution Shifts Using Population Stability Index (2302.00775v1)

Published 1 Feb 2023 in cs.LG

Abstract: Safety goes first. Meeting and maintaining industry safety standards for robustness of AI and ML models require continuous monitoring for faults and performance drops. Deep learning models are widely used in industrial applications, e.g., computer vision, but the susceptibility of their performance to environment changes (e.g., noise) \emph{after deployment} on the product, are now well-known. A major challenge is detecting data distribution shifts that happen, comparing the following: {\bf (i)} development stage of AI and ML models, i.e., train/validation/test, to {\bf (ii)} deployment stage on the product (i.e., even after `testing') in the environment. We focus on a computer vision example related to autonomous driving and aim at detecting shifts that occur as a result of adding noise to images. We use the population stability index (PSI) as a measure of presence and intensity of shift and present results of our empirical experiments showing a promising potential for the PSI. We further discuss multiple aspects of model monitoring and robustness that need to be analyzed \emph{simultaneously} to achieve robustness for industry safety standards. We propose the need for and the research direction toward \emph{categorizations} of problem classes and examples where monitoring for robustness is required and present challenges and pointers for future work from a \emph{practical} perspective.

Citations (1)

Summary

We haven't generated a summary for this paper yet.