Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cosmological Flow of Primordial Correlators (2302.00655v3)

Published 1 Feb 2023 in hep-th, astro-ph.CO, and gr-qc

Abstract: Correlation functions of primordial density fluctuations provide an exciting probe of the physics governing the earliest moments of our Universe. However, the standard approach to compute them is technically challenging. Theoretical predictions are therefore available only in restricted classes of theories. In this Letter, we present a complete method to systematically compute tree-level inflationary correlators. This method is based on following the time evolution of equal-time correlators and it accurately captures all physical effects in any theory. These theories are conveniently formulated at the level of inflationary fluctuations, and can feature any number of degrees of freedom with arbitrary dispersion relations and masses, coupled through any type of time-dependent interactions. We demonstrate the power of this approach by exploring the properties of the cosmological collider signal, a discovery channel for new high-energy physics, in theories with strong mixing and in the presence of features. This work lays the foundation for a universal program to assist our theoretical understanding of inflationary physics and generate theoretical data for an unbiased interpretation of upcoming cosmological observations.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (20)
  1. A. H. Guth, Phys. Rev. D 23, 347 (1981).
  2. A. D. Linde, Phys. Lett. B 108, 389 (1982).
  3. A. Albrecht and P. J. Steinhardt, Phys. Rev. Lett. 48, 1220 (1982).
  4. V. F. Mukhanov and G. V. Chibisov, JETP Lett. 33, 532 (1981).
  5. A. A. Starobinsky, Phys. Lett. B 117, 175 (1982).
  6. S. W. Hawking, Phys. Lett. B 115, 295 (1982).
  7. A. H. Guth and S. Y. Pi, Phys. Rev. Lett. 49, 1110 (1982).
  8. Y. Akrami et al. (Planck), Astron. Astrophys. 641, A10 (2020a), arXiv:1807.06211 [astro-ph.CO] .
  9. A. Achúcarro et al.,   (2022), arXiv:2203.08128 [astro-ph.CO] .
  10. Y. Akrami et al. (Planck), Astron. Astrophys. 641, A9 (2020b), arXiv:1905.05697 [astro-ph.CO] .
  11. S. Weinberg, Phys. Rev. D 72, 043514 (2005a), arXiv:hep-th/0506236 .
  12. D. Baumann and L. McAllister, Inflation and String Theory, Cambridge Monographs on Mathematical Physics (Cambridge University Press, 2015) arXiv:1404.2601 [hep-th] .
  13. D. J. Mulryne, JCAP 09, 010 (2013), arXiv:1302.3842 [astro-ph.CO] .
  14. D. J. Mulryne and J. W. Ronayne, J. Open Source Softw. 3, 494 (2018), arXiv:1609.00381 [astro-ph.CO] .
  15. S. Butchers and D. Seery, JCAP 07, 031 (2018), arXiv:1803.10563 [astro-ph.CO] .
  16. X. Chen and Y. Wang, JCAP 04, 027 (2010), arXiv:0911.3380 [hep-th] .
  17. N. Arkani-Hamed and J. Maldacena,   (2015), arXiv:1503.08043 [hep-th] .
  18. S. Weinberg, The Quantum theory of fields. Vol. 1 (Cambridge University Press, 2005).
  19. M. E. Peskin and D. V. Schroeder, An Introduction to quantum field theory (Addison-Wesley, Reading, USA, 1995).
  20. T. Tanaka and Y. Urakawa, JCAP 05, 014 (2011), arXiv:1103.1251 [astro-ph.CO] .
Citations (19)

Summary

We haven't generated a summary for this paper yet.