Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

PRUDEX-Compass: Towards Systematic Evaluation of Reinforcement Learning in Financial Markets (2302.00586v2)

Published 14 Jan 2023 in q-fin.TR, cs.AI, and cs.LG

Abstract: The financial markets, which involve more than $90 trillion market capitals, attract the attention of innumerable investors around the world. Recently, reinforcement learning in financial markets (FinRL) has emerged as a promising direction to train agents for making profitable investment decisions. However, the evaluation of most FinRL methods only focuses on profit-related measures and ignores many critical axes, which are far from satisfactory for financial practitioners to deploy these methods into real-world financial markets. Therefore, we introduce PRUDEX-Compass, which has 6 axes, i.e., Profitability, Risk-control, Universality, Diversity, rEliability, and eXplainability, with a total of 17 measures for a systematic evaluation. Specifically, i) we propose AlphaMix+ as a strong FinRL baseline, which leverages mixture-of-experts (MoE) and risk-sensitive approaches to make diversified risk-aware investment decisions, ii) we evaluate 8 FinRL methods in 4 long-term real-world datasets of influential financial markets to demonstrate the usage of our PRUDEX-Compass, iii) PRUDEX-Compass together with 4 real-world datasets, standard implementation of 8 FinRL methods and a portfolio management environment is released as public resources to facilitate the design and comparison of new FinRL methods. We hope that PRUDEX-Compass can not only shed light on future FinRL research to prevent untrustworthy results from stagnating FinRL into successful industry deployment but also provide a new challenging algorithm evaluation scenario for the reinforcement learning (RL) community.

Citations (4)

Summary

We haven't generated a summary for this paper yet.