Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Preserving local densities in low-dimensional embeddings (2301.13732v1)

Published 31 Jan 2023 in cs.LG and stat.ML

Abstract: Low-dimensional embeddings and visualizations are an indispensable tool for analysis of high-dimensional data. State-of-the-art methods, such as tSNE and UMAP, excel in unveiling local structures hidden in high-dimensional data and are therefore routinely applied in standard analysis pipelines in biology. We show, however, that these methods fail to reconstruct local properties, such as relative differences in densities (Fig. 1) and that apparent differences in cluster size can arise from computational artifact caused by differing sample sizes (Fig. 2). Providing a theoretical analysis of this issue, we then suggest dtSNE, which approximately conserves local densities. In an extensive study on synthetic benchmark and real world data comparing against five state-of-the-art methods, we empirically show that dtSNE provides similar global reconstruction, but yields much more accurate depictions of local distances and relative densities.

Citations (2)

Summary

We haven't generated a summary for this paper yet.