Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fine Robotic Manipulation without Force/Torque Sensor (2301.13413v2)

Published 31 Jan 2023 in cs.RO and cs.LG

Abstract: Force Sensing and Force Control are essential to many industrial applications. Typically, a 6-axis Force/Torque (F/T) sensor is mounted between the robot's wrist and the end-effector in order to measure the forces and torques exerted by the environment onto the robot (the external wrench). Although a typical 6-axis F/T sensor can provide highly accurate measurements, it is expensive and vulnerable to drift and external impacts. Existing methods aiming at estimating the external wrench using only the robot's internal signals are limited in scope: for example, wrench estimation accuracy was mostly validated in free-space motions and simple contacts as opposed to tasks like assembly that require high-precision force control. Here we present a Neural Network based method and argue that by devoting particular attention to the training data structure, it is possible to accurately estimate the external wrench in a wide range of scenarios based solely on internal signals. As an illustration, we demonstrate a pin insertion experiment with 100-micron clearance and a hand-guiding experiment, both performed without external F/T sensors or joint torque sensors. Our result opens the possibility of equipping the existing 2.7 million industrial robots with Force Sensing and Force Control capabilities without any additional hardware.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (33)
  1. Springer, 2008.
  2. F. Suárez-Ruiz, X. Zhou, and Q.-C. Pham, “Can robots assemble an ikea chair?,” Science Robotics, vol. 3, no. 17, p. eaat6385, 2018.
  3. H. Pham and Q.-C. Pham, “Convex controller synthesis for robot contact,” IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 3330–3337, 2020.
  4. A. De Luca and R. Mattone, “Sensorless robot collision detection and hybrid force/motion control,” in Proceedings of the 2005 IEEE international conference on robotics and automation, pp. 999–1004, IEEE, 2005.
  5. M. Van Damme, P. Beyl, B. Vanderborght, V. Grosu, R. Van Ham, I. Vanderniepen, A. Matthys, and D. Lefeber, “Estimating robot end-effector force from noisy actuator torque measurements,” in 2011 IEEE International Conference on Robotics and Automation, pp. 1108–1113, IEEE, 2011.
  6. A. Wahrburg, J. Bös, K. D. Listmann, F. Dai, B. Matthias, and H. Ding, “Motor-current-based estimation of cartesian contact forces and torques for robotic manipulators and its application to force control,” IEEE Transactions on Automation Science and Engineering, vol. 15, no. 2, pp. 879–886, 2017.
  7. S. K. Kommuri, S. Han, and S. Lee, “External torque estimation using higher order sliding-mode observer for robot manipulators,” IEEE/ASME Transactions on Mechatronics, vol. 27, no. 1, pp. 513–523, 2022.
  8. D. Nguyen-Tuong, M. Seeger, and J. Peters, “Model learning with local gaussian process regression,” Advanced Robotics, vol. 23, no. 15, pp. 2015–2034, 2009.
  9. X. Liu, F. Zhao, S. S. Ge, Y. Wu, and X. Mei, “End-effector force estimation for flexible-joint robots with global friction approximation using neural networks,” IEEE Transactions on Industrial Informatics, vol. 15, no. 3, pp. 1730–1741, 2018.
  10. A.-N. Sharkawy, P. N. Koustoumpardis, and N. Aspragathos, “Human–robot collisions detection for safe human–robot interaction using one multi-input–output neural network,” Soft Computing, vol. 24, no. 9, pp. 6687–6719, 2020.
  11. D. Kim, D. Lim, and J. Park, “Transferable collision detection learning for collaborative manipulator using versatile modularized neural network,” IEEE Transactions on Robotics, 2021.
  12. W. Khalil and E. Dombre, Modeling identification and control of robots. CRC Press, 2002.
  13. A. De Luca and R. Mattone, “Actuator failure detection and isolation using generalized momenta,” in 2003 IEEE international conference on robotics and automation (cat. No. 03CH37422), vol. 1, pp. 634–639, IEEE, 2003.
  14. Y. Liu, J. Li, Z. Zhang, X. Hu, and W. Zhang, “Experimental comparison of five friction models on the same test-bed of the micro stick-slip motion system,” Mechanical Sciences, vol. 6, no. 1, pp. 15–28, 2015.
  15. S. Liu, L. Wang, and X. V. Wang, “Sensorless haptic control for human-robot collaborative assembly,” CIRP Journal of Manufacturing Science and Technology, vol. 32, pp. 132–144, 2021.
  16. C. Gaz, E. Magrini, and A. De Luca, “A model-based residual approach for human-robot collaboration during manual polishing operations,” Mechatronics, vol. 55, pp. 234–247, 2018.
  17. C. Gaz, M. Cognetti, A. Oliva, P. R. Giordano, and A. De Luca, “Dynamic identification of the franka emika panda robot with retrieval of feasible parameters using penalty-based optimization,” IEEE Robotics and Automation Letters, vol. 4, no. 4, pp. 4147–4154, 2019.
  18. J. Hu and R. Xiong, “Contact force estimation for robot manipulator using semiparametric model and disturbance kalman filter,” IEEE Transactions on Industrial Electronics, vol. 65, no. 4, pp. 3365–3375, 2017.
  19. S. Schaal, C. G. Atkeson, and S. Vijayakumar, “Scalable techniques from nonparametric statistics for real time robot learning,” Applied Intelligence, vol. 17, no. 1, pp. 49–60, 2002.
  20. S. Vijayakumar and S. Schaal, “Local dimensionality reduction for locally weighted learning,” in Proceedings 1997 IEEE International Symposium on Computational Intelligence in Robotics and Automation CIRA’97.’Towards New Computational Principles for Robotics and Automation’, pp. 220–225, IEEE, 1997.
  21. D. Nguyen-Tuong and J. Peters, “Local gaussian process regression for real-time model-based robot control,” in 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 380–385, IEEE, 2008.
  22. A. Gijsberts and G. Metta, “Real-time model learning using incremental sparse spectrum gaussian process regression,” Neural networks, vol. 41, pp. 59–69, 2013.
  23. N. Yilmaz, J. Y. Wu, P. Kazanzides, and U. Tumerdem, “Neural network based inverse dynamics identification and external force estimation on the da vinci research kit,” in 2020 IEEE International Conference on Robotics and Automation (ICRA), pp. 1387–1393, IEEE, 2020.
  24. D.-H. Lee, W. Hwang, and S.-C. Lim, “Interaction force estimation using camera and electrical current without force/torque sensor,” IEEE Sensors Journal, vol. 18, no. 21, pp. 8863–8872, 2018.
  25. J. Xia and K. Kiguchi, “Sensorless real-time force estimation in microsurgery robots using a time series convolutional neural network,” IEEE Access, vol. 9, pp. 149447–149455, 2021.
  26. H. Farazi and S. Behnke, “Online visual robot tracking and identification using deep lstm networks,” in 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 6118–6125, IEEE, 2017.
  27. D. Wu, Y. Zhang, M. Ourak, K. Niu, J. Dankelman, and E. Vander Poorten, “Hysteresis modeling of robotic catheters based on long short-term memory network for improved environment reconstruction,” IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 2106–2113, 2021.
  28. MIT press, 2016.
  29. S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation, vol. 9, no. 8, pp. 1735–1780, 1997.
  30. T. Zhang, X. Liang, and Y. Zou, “Robot peg-in-hole assembly based on contact force estimation compensated by convolutional neural network,” Control Engineering Practice, vol. 120, p. 105012, 2022.
  31. Y. LeCun and Y. Bengio, “Convolutional networks for images, speech, and time series,” The handbook of brain theory and neural networks, vol. 3361, no. 10, p. 1995, 1995.
  32. N. Vuong, H. Pham, and Q.-C. Pham, “Learning sequences of manipulation primitives for robotic assembly,” in 2021 IEEE International Conference on Robotics and Automation (ICRA), pp. 4086–4092, IEEE, 2021.
  33. L. Johannsmeier, M. Gerchow, and S. Haddadin, “A framework for robot manipulation: Skill formalism, meta learning and adaptive control,” in 2019 International Conference on Robotics and Automation (ICRA), pp. 5844–5850, IEEE, 2019.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Shilin Shan (4 papers)
  2. Quang-Cuong Pham (56 papers)
Citations (3)

Summary

We haven't generated a summary for this paper yet.