Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Modular Multi-stage Lightweight Graph Transformer Network for Human Pose and Shape Estimation from 2D Human Pose (2301.13403v1)

Published 31 Jan 2023 in cs.CV and cs.AI

Abstract: In this research, we address the challenge faced by existing deep learning-based human mesh reconstruction methods in balancing accuracy and computational efficiency. These methods typically prioritize accuracy, resulting in large network sizes and excessive computational complexity, which may hinder their practical application in real-world scenarios, such as virtual reality systems. To address this issue, we introduce a modular multi-stage lightweight graph-based transformer network for human pose and shape estimation from 2D human pose, a pose-based human mesh reconstruction approach that prioritizes computational efficiency without sacrificing reconstruction accuracy. Our method consists of a 2D-to-3D lifter module that utilizes graph transformers to analyze structured and implicit joint correlations in 2D human poses, and a mesh regression module that combines the extracted pose features with a mesh template to produce the final human mesh parameters.

Summary

We haven't generated a summary for this paper yet.