Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimal Transport Perturbations for Safe Reinforcement Learning with Robustness Guarantees (2301.13375v2)

Published 31 Jan 2023 in cs.LG, cs.AI, and stat.ML

Abstract: Robustness and safety are critical for the trustworthy deployment of deep reinforcement learning. Real-world decision making applications require algorithms that can guarantee robust performance and safety in the presence of general environment disturbances, while making limited assumptions on the data collection process during training. In order to accomplish this goal, we introduce a safe reinforcement learning framework that incorporates robustness through the use of an optimal transport cost uncertainty set. We provide an efficient implementation based on applying Optimal Transport Perturbations to construct worst-case virtual state transitions, which does not impact data collection during training and does not require detailed simulator access. In experiments on continuous control tasks with safety constraints, our approach demonstrates robust performance while significantly improving safety at deployment time compared to standard safe reinforcement learning.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com
X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets