Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SSR-TA: Sequence to Sequence based expert recurrent recommendation for ticket automation (2301.12612v1)

Published 30 Jan 2023 in cs.LG and cs.IR

Abstract: The ticket automation provides crucial support for the normal operation of IT software systems. An essential task of ticket automation is to assign experts to solve upcoming tickets. However, facing thousands of tickets, inappropriate assignments will make tickets transfer frequently among experts, which causes time delays and wasted resources. Effectively and efficiently finding an appropriate expert in fewer steps is vital to ticket automation. In this paper, we proposed a sequence to sequence based translation model combined with a recurrent recommendation network to recommend appropriate experts for tickets. The sequence to sequence model transforms the ticket description into the corresponding resolution for capturing the potential and useful features of representing tickets. The recurrent recommendation network recommends the appropriate expert based on the assumption that the previous expert in the recommendation sequence cannot solve the expert. To evaluate the performance, we conducted experiments to compare several baselines with SSR-TA on two real-world datasets, and the experimental results show that our proposed model outperforms the baselines. The comparative experiment results also show that SSR-TA has a better performance of expert recommendations for user-generated tickets.

Summary

We haven't generated a summary for this paper yet.