Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Global Flood Prediction: a Multimodal Machine Learning Approach (2301.12548v1)

Published 29 Jan 2023 in cs.LG and cs.CY

Abstract: Flooding is one of the most destructive and costly natural disasters, and climate changes would further increase risks globally. This work presents a novel multimodal machine learning approach for multi-year global flood risk prediction, combining geographical information and historical natural disaster dataset. Our multimodal framework employs state-of-the-art processing techniques to extract embeddings from each data modality, including text-based geographical data and tabular-based time-series data. Experiments demonstrate that a multimodal approach, that is combining text and statistical data, outperforms a single-modality approach. Our most advanced architecture, employing embeddings extracted using transfer learning upon DistilBert model, achieves 75\%-77\% ROCAUC score in predicting the next 1-5 year flooding event in historically flooded locations. This work demonstrates the potentials of using machine learning for long-term planning in natural disaster management.

Citations (8)

Summary

We haven't generated a summary for this paper yet.