Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unearthing InSights into Mars: Unsupervised Source Separation with Limited Data (2301.11981v2)

Published 27 Jan 2023 in cs.LG, astro-ph.EP, and eess.SP

Abstract: Source separation involves the ill-posed problem of retrieving a set of source signals that have been observed through a mixing operator. Solving this problem requires prior knowledge, which is commonly incorporated by imposing regularity conditions on the source signals, or implicitly learned through supervised or unsupervised methods from existing data. While data-driven methods have shown great promise in source separation, they often require large amounts of data, which rarely exists in planetary space missions. To address this challenge, we propose an unsupervised source separation scheme for domains with limited data access that involves solving an optimization problem in the wavelet scattering covariance representation space$\unicode{x2014}$an interpretable, low-dimensional representation of stationary processes. We present a real-data example in which we remove transient, thermally-induced microtilts$\unicode{x2014}$known as glitches$\unicode{x2014}$from data recorded by a seismometer during NASA's InSight mission on Mars. Thanks to the wavelet scattering covariances' ability to capture non-Gaussian properties of stochastic processes, we are able to separate glitches using only a few glitch-free data snippets.

Citations (3)

Summary

We haven't generated a summary for this paper yet.