Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

BOMP-NAS: Bayesian Optimization Mixed Precision NAS (2301.11810v1)

Published 27 Jan 2023 in cs.LG and cs.CV

Abstract: Bayesian Optimization Mixed-Precision Neural Architecture Search (BOMP-NAS) is an approach to quantization-aware neural architecture search (QA-NAS) that leverages both Bayesian optimization (BO) and mixed-precision quantization (MP) to efficiently search for compact, high performance deep neural networks. The results show that integrating quantization-aware fine-tuning (QAFT) into the NAS loop is a necessary step to find networks that perform well under low-precision quantization: integrating it allows a model size reduction of nearly 50\% on the CIFAR-10 dataset. BOMP-NAS is able to find neural networks that achieve state of the art performance at much lower design costs. This study shows that BOMP-NAS can find these neural networks at a 6x shorter search time compared to the closest related work.

Citations (3)

Summary

We haven't generated a summary for this paper yet.