Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning 6-DoF Fine-grained Grasp Detection Based on Part Affordance Grounding (2301.11564v2)

Published 27 Jan 2023 in cs.RO, cs.CL, cs.CV, and cs.HC

Abstract: Robotic grasping is a fundamental ability for a robot to interact with the environment. Current methods focus on how to obtain a stable and reliable grasping pose in object level, while little work has been studied on part (shape)-wise grasping which is related to fine-grained grasping and robotic affordance. Parts can be seen as atomic elements to compose an object, which contains rich semantic knowledge and a strong correlation with affordance. However, lacking a large part-wise 3D robotic dataset limits the development of part representation learning and downstream applications. In this paper, we propose a new large Language-guided SHape grAsPing datasEt (named LangSHAPE) to promote 3D part-level affordance and grasping ability learning. From the perspective of robotic cognition, we design a two-stage fine-grained robotic grasping framework (named LangPartGPD), including a novel 3D part language grounding model and a part-aware grasp pose detection model, in which explicit language input from human or LLMs could guide a robot to generate part-level 6-DoF grasping pose with textual explanation. Our method combines the advantages of human-robot collaboration and LLMs' planning ability using explicit language as a symbolic intermediate. To evaluate the effectiveness of our proposed method, we perform 3D part grounding and fine-grained grasp detection experiments on both simulation and physical robot settings, following language instructions across different degrees of textual complexity. Results show our method achieves competitive performance in 3D geometry fine-grained grounding, object affordance inference, and 3D part-aware grasping tasks. Our dataset and code are available on our project website https://sites.google.com/view/lang-shape

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (10)
  1. Yaoxian Song (8 papers)
  2. Penglei Sun (9 papers)
  3. Yi Ren (215 papers)
  4. Yu Zheng (196 papers)
  5. Yue Zhang (620 papers)
  6. Piaopiao Jin (2 papers)
  7. Zhixu Li (43 papers)
  8. Xiaowen Chu (108 papers)
  9. Tiefeng Li (10 papers)
  10. Jason Gu (12 papers)
Citations (10)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Youtube Logo Streamline Icon: https://streamlinehq.com