Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Nik Defense: An Artificial Intelligence Based Defense Mechanism against Selfish Mining in Bitcoin (2301.11463v3)

Published 26 Jan 2023 in cs.CR, cs.AI, cs.DC, and cs.LG

Abstract: The Bitcoin cryptocurrency has received much attention recently. In the network of Bitcoin, transactions are recorded in a ledger. In this network, the process of recording transactions depends on some nodes called miners that execute a protocol known as mining protocol. One of the significant aspects of mining protocol is incentive compatibility. However, literature has shown that Bitcoin mining's protocol is not incentive-compatible. Some nodes with high computational power can obtain more revenue than their fair share by adopting a type of attack called the selfish mining attack. In this paper, we propose an artificial intelligence-based defense against selfish mining attacks by applying the theory of learning automata. The proposed defense mechanism ignores private blocks by assigning weight based on block discovery time and changes current Bitcoin's fork resolving policy by evaluating branches' height difference in a self-adaptive manner utilizing learning automata. To the best of our knowledge, the proposed protocol is the literature's first learning-based defense mechanism. Simulation results have shown the superiority of the proposed mechanism against tie-breaking mechanism, which is a well-known defense. The simulation results have shown that the suggested defense mechanism increases the profit threshold up to 40\% and decreases the revenue of selfish attackers.

Citations (4)

Summary

We haven't generated a summary for this paper yet.