Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Banker Online Mirror Descent: A Universal Approach for Delayed Online Bandit Learning (2301.10500v2)

Published 25 Jan 2023 in cs.LG

Abstract: We propose Banker Online Mirror Descent (Banker-OMD), a novel framework generalizing the classical Online Mirror Descent (OMD) technique in the online learning literature. The Banker-OMD framework almost completely decouples feedback delay handling and the task-specific OMD algorithm design, thus facilitating the design of new algorithms capable of efficiently and robustly handling feedback delays. Specifically, it offers a general methodology for achieving $\widetilde{\mathcal O}(\sqrt{T} + \sqrt{D})$-style regret bounds in online bandit learning tasks with delayed feedback, where $T$ is the number of rounds and $D$ is the total feedback delay. We demonstrate the power of \texttt{Banker-OMD} by applications to two important bandit learning scenarios with delayed feedback, including delayed scale-free adversarial Multi-Armed Bandits (MAB) and delayed adversarial linear bandits. \texttt{Banker-OMD} leads to the first delayed scale-free adversarial MAB algorithm achieving $\widetilde{\mathcal O}(\sqrt{K}L(\sqrt T+\sqrt D))$ regret and the first delayed adversarial linear bandit algorithm achieving $\widetilde{\mathcal O}(\text{poly}(n)(\sqrt{T} + \sqrt{D}))$ regret. As a corollary, the first application also implies $\widetilde{\mathcal O}(\sqrt{KT}L)$ regret for non-delayed scale-free adversarial MABs, which is the first to match the $\Omega(\sqrt{KT}L)$ lower bound up to logarithmic factors and can be of independent interest.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Jiatai Huang (7 papers)
  2. Yan Dai (23 papers)
  3. Longbo Huang (89 papers)
Citations (4)

Summary

We haven't generated a summary for this paper yet.