Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
GPT-4o
Gemini 2.5 Pro Pro
o3 Pro
GPT-4.1 Pro
DeepSeek R1 via Azure Pro
2000 character limit reached

Local Feature Extraction from Salient Regions by Feature Map Transformation (2301.10413v1)

Published 25 Jan 2023 in cs.CV

Abstract: Local feature matching is essential for many applications, such as localization and 3D reconstruction. However, it is challenging to match feature points accurately in various camera viewpoints and illumination conditions. In this paper, we propose a framework that robustly extracts and describes salient local features regardless of changing light and viewpoints. The framework suppresses illumination variations and encourages structural information to ignore the noise from light and to focus on edges. We classify the elements in the feature covariance matrix, an implicit feature map information, into two components. Our model extracts feature points from salient regions leading to reduced incorrect matches. In our experiments, the proposed method achieved higher accuracy than the state-of-the-art methods in the public dataset, such as HPatches, Aachen Day-Night, and ETH, which especially show highly variant viewpoints and illumination.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.