Testing the Speed of Gravity with Black Hole Ringdown (2301.10272v3)
Abstract: We investigate how the speed of gravitational waves, $c_{GW}$, can be tested by upcoming black hole ringdown observations. We do so in the context of hairy black hole solutions, where the hair is associated with a new scalar degree of freedom, forecasting that LISA and TianQin will be able to constrain deviations of $c_{GW}$ from the speed of light at the ${\cal O}(10{-4})$ level from a single supermassive black hole merger. We discuss how these constraints depend on the nature of the scalar hair, what different aspects of the underlying physics they are sensitive to in comparison with constraints derived from gravitational wave propagation effects, which observable systems will place the most stringent bounds, and that constraints are expected to improve by up to two orders of magnitude with multiple observations. This is especially interesting for dark energy-related theories, where existing bounds from GW170817 need not apply at lower frequencies and where upcoming bounds from lower-frequency missions will therefore be especially powerful. As such, we also forecast analogous bounds for the intermediate-frequency AEDGE and DECIGO missions. Finally, we discuss and forecast analogous black hole ringdown constraints at higher frequencies (so from LVK, the Einstein Telescope and Cosmic Explorer) and in what circumstances they can yield new information on top of existing constraints on $c_{GW}$. All calculations performed in this paper are reproducible via a companion Mathematica notebook.
- S. Sirera Lahoz, “ringdown-calculations.” https://github.com/sergisl/ringdown-calculations.
- T. Baker, E. Bellini, P. G. Ferreira, M. Lagos, J. Noller, and I. Sawicki, “Strong constraints on cosmological gravity from GW170817 and GRB 170817A,” Phys. Rev. Lett. 119 (2017) no. 25, 251301, arXiv:1710.06394 [astro-ph.CO].
- P. Creminelli and F. Vernizzi, “Dark Energy after GW170817 and GRB170817A,” Phys. Rev. Lett. 119 (2017) no. 25, 251302, arXiv:1710.05877 [astro-ph.CO].
- J. Sakstein and B. Jain, “Implications of the Neutron Star Merger GW170817 for Cosmological Scalar-Tensor Theories,” Phys. Rev. Lett. 119 (2017) no. 25, 251303, arXiv:1710.05893 [astro-ph.CO].
- J. M. Ezquiaga and M. Zumalacárregui, “Dark Energy After GW170817: Dead Ends and the Road Ahead,” Phys. Rev. Lett. 119 (2017) no. 25, 251304, arXiv:1710.05901 [astro-ph.CO].
- S. Boran, S. Desai, E. O. Kahya, and R. P. Woodard, “GW170817 Falsifies Dark Matter Emulators,” Phys. Rev. D 97 (2018) no. 4, 041501, arXiv:1710.06168 [astro-ph.HE].
- L. Amendola, M. Kunz, M. Motta, I. D. Saltas, and I. Sawicki, “Observables and unobservables in dark energy cosmologies,” Phys. Rev. D87 (2013) no. 2, 023501, arXiv:1210.0439 [astro-ph.CO].
- L. Amendola, G. Ballesteros, and V. Pettorino, “Effects of modified gravity on B-mode polarization,” Phys. Rev. D90 (2014) 043009, arXiv:1405.7004 [astro-ph.CO].
- C. Deffayet, O. Pujolas, I. Sawicki, and A. Vikman, “Imperfect Dark Energy from Kinetic Gravity Braiding,” JCAP 1010 (2010) 026, arXiv:1008.0048 [hep-th].
- E. V. Linder, “Are Scalar and Tensor Deviations Related in Modified Gravity?,” Phys. Rev. D90 (2014) no. 8, 083536, arXiv:1407.8184 [astro-ph.CO].
- M. Raveri, C. Baccigalupi, A. Silvestri, and S.-Y. Zhou, “Measuring the speed of cosmological gravitational waves,” Phys. Rev. D91 (2015) no. 6, 061501, arXiv:1405.7974 [astro-ph.CO].
- I. D. Saltas, I. Sawicki, L. Amendola, and M. Kunz, “Anisotropic Stress as a Signature of Nonstandard Propagation of Gravitational Waves,” Phys. Rev. Lett. 113 (2014) no. 19, 191101, arXiv:1406.7139 [astro-ph.CO].
- L. Lombriser and A. Taylor, “Breaking a Dark Degeneracy with Gravitational Waves,” JCAP 1603 (2016) no. 03, 031, arXiv:1509.08458 [astro-ph.CO].
- L. Lombriser and N. A. Lima, “Challenges to Self-Acceleration in Modified Gravity from Gravitational Waves and Large-Scale Structure,” Phys. Lett. B765 (2017) 382–385, arXiv:1602.07670 [astro-ph.CO].
- J. Beltran Jimenez, F. Piazza, and H. Velten, “Evading the Vainshtein Mechanism with Anomalous Gravitational Wave Speed: Constraints on Modified Gravity from Binary Pulsars,” Phys. Rev. Lett. 116 (2016) no. 6, 061101, arXiv:1507.05047 [gr-qc].
- D. Bettoni, J. M. Ezquiaga, K. Hinterbichler, and M. Zumalacárregui, “Speed of Gravitational Waves and the Fate of Scalar-Tensor Gravity,” Phys. Rev. D95 (2017) no. 8, 084029, arXiv:1608.01982 [gr-qc].
- I. Sawicki, I. D. Saltas, M. Motta, L. Amendola, and M. Kunz, “Nonstandard gravitational waves imply gravitational slip: On the difficulty of partially hiding new gravitational degrees of freedom,” Phys. Rev. D95 (2017) no. 8, 083520, arXiv:1612.02002 [astro-ph.CO].
- N. Cornish, D. Blas, and G. Nardini, “Bounding the speed of gravity with gravitational wave observations,” arXiv:1707.06101 [gr-qc].
- C. de Rham and S. Melville, “Gravitational Rainbows: LIGO and Dark Energy at its Cutoff,” Phys. Rev. Lett. 121 (2018) no. 22, 221101, arXiv:1806.09417 [hep-th].
- G. D. Moore and A. E. Nelson, “Lower bound on the propagation speed of gravity from gravitational Cherenkov radiation,” JHEP 09 (2001) 023, arXiv:hep-ph/0106220.
- I. Harry and J. Noller, “Probing the speed of gravity with LVK, LISA, and joint observations,” arXiv:2207.10096 [gr-qc].
- J. Noller and A. Nicola, “Cosmological parameter constraints for Horndeski scalar-tensor gravity,” Phys. Rev. D 99 (2019) no. 10, 103502, arXiv:1811.12928 [astro-ph.CO].
- E. Bellini, A. J. Cuesta, R. Jimenez, and L. Verde, “Constraints on deviations from ΛΛ\Lambdaroman_ΛCDM within Horndeski gravity,” JCAP 02 (2016) 053, arXiv:1509.07816 [astro-ph.CO]. [Erratum: JCAP 06, E01 (2016)].
- B. Hu, M. Raveri, N. Frusciante, and A. Silvestri, “Effective Field Theory of Cosmic Acceleration: an implementation in CAMB,” Phys. Rev. D 89 (2014) no. 10, 103530, arXiv:1312.5742 [astro-ph.CO].
- M. Raveri, B. Hu, N. Frusciante, and A. Silvestri, “Effective Field Theory of Cosmic Acceleration: constraining dark energy with CMB data,” Phys. Rev. D90 (2014) no. 4, 043513, arXiv:1405.1022 [astro-ph.CO].
- J. Gleyzes, D. Langlois, M. Mancarella, and F. Vernizzi, “Effective Theory of Dark Energy at Redshift Survey Scales,” JCAP 1602 (2016) no. 02, 056, arXiv:1509.02191 [astro-ph.CO].
- C. D. Kreisch and E. Komatsu, “Cosmological Constraints on Horndeski Gravity in Light of GW170817,” arXiv:1712.02710 [astro-ph.CO].
- M. Zumalacárregui, E. Bellini, I. Sawicki, J. Lesgourgues, and P. G. Ferreira, “hi_class: Horndeski in the Cosmic Linear Anisotropy Solving System,” JCAP 1708 (2017) no. 08, 019, arXiv:1605.06102 [astro-ph.CO].
- D. Alonso, E. Bellini, P. G. Ferreira, and M. Zumalacárregui, “Observational future of cosmological scalar-tensor theories,” Phys. Rev. D95 (2017) no. 6, 063502, arXiv:1610.09290 [astro-ph.CO].
- S. Arai and A. Nishizawa, “Generalized framework for testing gravity with gravitational-wave propagation. II. Constraints on Horndeski theory,” Phys. Rev. D97 (2018) no. 10, 104038, arXiv:1711.03776 [gr-qc].
- N. Frusciante, S. Peirone, S. Casas, and N. A. Lima, “The road ahead of Horndeski: cosmology of surviving scalar-tensor theories,” arXiv:1810.10521 [astro-ph.CO].
- R. Reischke, A. S. Mancini, B. M. Schafer, and P. M. Merkel, “Investigating scalar-tensor-gravity with statistics of the cosmic large-scale structure,” arXiv:1804.02441 [astro-ph.CO].
- A. Spurio Mancini, R. Reischke, V. Pettorino, B. M. Schafer, and M. Zumalacárregui, “Testing (modified) gravity with 3D and tomographic cosmic shear,” Mon. Not. Roy. Astron. Soc. 480 (2018) 3725, arXiv:1801.04251 [astro-ph.CO].
- J. Noller and A. Nicola, “Radiative stability and observational constraints on dark energy and modified gravity,” Phys. Rev. D 102 (2020) no. 10, 104045, arXiv:1811.03082 [astro-ph.CO].
- S. Arai, P. Karmakar, and A. Nishizawa, “Cosmological evolution of viable models in the generalized scalar-tensor theory,” Phys. Rev. D 102 (2020) no. 2, 024003, arXiv:1912.01768 [gr-qc].
- G. Brando, F. T. Falciano, E. V. Linder, and H. E. S. Velten, “Modified gravity away from a ΛΛ\Lambdaroman_ΛCDM background,” JCAP 11 (2019) 018, arXiv:1904.12903 [astro-ph.CO].
- R. Arjona, W. Cardona, and S. Nesseris, “Designing Horndeski and the effective fluid approach,” Phys. Rev. D 100 (2019) no. 6, 063526, arXiv:1904.06294 [astro-ph.CO].
- M. Raveri, “Reconstructing Gravity on Cosmological Scales,” Phys. Rev. D 101 (2020) no. 8, 083524, arXiv:1902.01366 [astro-ph.CO].
- L. Perenon, J. Bel, R. Maartens, and A. de la Cruz-Dombriz, “Optimising growth of structure constraints on modified gravity,” JCAP 06 (2019) 020, arXiv:1901.11063 [astro-ph.CO].
- N. Frusciante and L. Perenon, “Effective field theory of dark energy: A review,” Phys. Rept. 857 (2020) 1–63, arXiv:1907.03150 [astro-ph.CO].
- A. Spurio Mancini, F. Köhlinger, B. Joachimi, V. Pettorino, B. M. Schäfer, R. Reischke, E. van Uitert, S. Brieden, M. Archidiacono, and J. Lesgourgues, “KiDS + GAMA: constraints on horndeski gravity from combined large-scale structure probes,” Mon. Not. Roy. Astron. Soc. 490 (2019) no. 2, 2155–2177, arXiv:1901.03686 [astro-ph.CO].
- A. Bonilla, R. D’Agostino, R. C. Nunes, and J. C. N. de Araujo, “Forecasts on the speed of gravitational waves at high z𝑧zitalic_z,” JCAP 03 (2020) 015, arXiv:1910.05631 [gr-qc].
- T. Baker and I. Harrison, “Constraining Scalar-Tensor Modified Gravity with Gravitational Waves and Large Scale Structure Surveys,” JCAP 01 (2021) 068, arXiv:2007.13791 [astro-ph.CO].
- S. Joudaki, P. G. Ferreira, N. A. Lima, and H. A. Winther, “Testing Gravity on Cosmic Scales: A Case Study of Jordan-Brans-Dicke Theory,” arXiv:2010.15278 [astro-ph.CO].
- J. Noller, L. Santoni, E. Trincherini, and L. G. Trombetta, “Scalar-tensor cosmologies without screening,” JCAP 01 (2021) 045, arXiv:2008.08649 [astro-ph.CO].
- J. Noller, “Cosmological constraints on dark energy in light of gravitational wave bounds,” Phys. Rev. D 101 (2020) no. 6, 063524, arXiv:2001.05469 [astro-ph.CO].
- D. Traykova, E. Bellini, P. G. Ferreira, C. García-García, J. Noller, and M. Zumalacárregui, “Theoretical priors in scalar-tensor cosmologies: Shift-symmetric Horndeski models,” Phys. Rev. D 104 (2021) no. 8, 083502, arXiv:2103.11195 [astro-ph.CO].
- T. B. Littenberg and N. J. Cornish, “Prospects for Gravitational Wave Measurement of ZTF J1539+5027,” Astrophys. J. Lett. 881 (2019) no. 2, L43, arXiv:1908.00678 [astro-ph.IM].
- T. Baker, E. Barausse, A. Chen, C. de Rham, M. Pieroni, and G. Tasinato, “Testing gravitational wave propagation with multiband detections,” arXiv:2209.14398 [gr-qc].
- A. Sesana, “Prospects for Multiband Gravitational-Wave Astronomy after GW150914,” Phys. Rev. Lett. 116 (2016) no. 23, 231102, arXiv:1602.06951 [gr-qc].
- E. Berti, “Lisa observations of massive black hole mergers: event rates and issues in waveform modelling,” Class. Quant. Grav. 23 (2006) S785–S798, arXiv:astro-ph/0602470.
- A. Sesana, F. Haardt, P. Madau, and M. Volonteri, “The gravitational wave signal from massive black hole binaries and its contribution to the LISA data stream,” Astrophys. J. 623 (2005) 23–30, arXiv:astro-ph/0409255.
- K. J. Rhook and J. S. B. Wyithe, “Realistic event rates for detection of supermassive black hole coalescence by LISA,” Mon. Not. Roy. Astron. Soc. 361 (2005) 1145–1152, arXiv:astro-ph/0503210.
- T. Tanaka and Z. Haiman, “The Assembly of Supermassive Black Holes at High Redshifts,” Astrophys. J. 696 (2009) 1798–1822, arXiv:0807.4702 [astro-ph].
- E. Berti, V. Cardoso, and A. O. Starinets, “Quasinormal modes of black holes and black branes,” Class. Quant. Grav. 26 (2009) 163001, arXiv:0905.2975 [gr-qc].
- M. Bonetti, A. Sesana, F. Haardt, E. Barausse, and M. Colpi, “Post-Newtonian evolution of massive black hole triplets in galactic nuclei – IV. Implications for LISA,” Mon. Not. Roy. Astron. Soc. 486 (2019) no. 3, 4044–4060, arXiv:1812.01011 [astro-ph.GA].
- G. W. Horndeski, “Second-order scalar-tensor field equations in a four-dimensional space,” Int. J. Theor. Phys. 10 (1974) 363–384.
- C. Deffayet, X. Gao, D. A. Steer, and G. Zahariade, “From k-essence to generalised Galileons,” Phys. Rev. D84 (2011) 064039, arXiv:1103.3260 [hep-th].
- T. Kobayashi, M. Yamaguchi, and J. Yokoyama, “Generalized G-inflation: Inflation with the most general second-order field equations,” Prog. Theor. Phys. 126 (2011) 511–529, arXiv:1105.5723 [hep-th].
- D. Brizuela, J. M. Martin-Garcia, and G. A. Mena Marugan, “Second and higher-order perturbations of a spherical spacetime,” Phys. Rev. D 74 (2006) 044039, arXiv:gr-qc/0607025.
- D. Brizuela, J. M. Martin-Garcia, and G. A. M. Marugan, “High-order gauge-invariant perturbations of a spherical spacetime,” Phys. Rev. D 76 (2007) 024004, arXiv:gr-qc/0703069.
- D. Brizuela, J. M. Martin-Garcia, and M. Tiglio, “A Complete gauge-invariant formalism for arbitrary second-order perturbations of a Schwarzschild black hole,” Phys. Rev. D 80 (2009) 024021, arXiv:0903.1134 [gr-qc].
- M. Lagos and L. Hui, “Generation and propagation of nonlinear quasi-normal modes of a Schwarzschild black hole,” arXiv:2208.07379 [gr-qc].
- T. Regge and J. A. Wheeler, “Stability of a Schwarzschild singularity,” Phys. Rev. 108 (1957) 1063–1069.
- S. Hawking, “Black holes in the brans-dicke,” Communications in Mathematical Physics 25 (1972) no. 2, 167–171.
- T. P. Sotiriou and V. Faraoni, “Black holes in scalar-tensor gravity,” Phys. Rev. Lett. 108 (2012) 081103. https://link.aps.org/doi/10.1103/PhysRevLett.108.081103.
- L. Hui and A. Nicolis, “No-hair theorem for the galileon,” Phys. Rev. Lett. 110 (2013) 241104. https://link.aps.org/doi/10.1103/PhysRevLett.110.241104.
- T. P. Sotiriou and S.-Y. Zhou, “Black hole hair in generalized scalar-tensor gravity,” Phys. Rev. Lett. 112 (2014) 251102, arXiv:1312.3622 [gr-qc].
- O. J. Tattersall and P. G. Ferreira, “Quasinormal modes of black holes in Horndeski gravity,” Phys. Rev. D 97 (2018) no. 10, 104047, arXiv:1804.08950 [gr-qc].
- O. J. Tattersall and P. G. Ferreira, “Forecasts for Low Spin Black Hole Spectroscopy in Horndeski Gravity,” Phys. Rev. D 99 (2019) no. 10, 104082, arXiv:1904.05112 [gr-qc].
- H. Motohashi and M. Minamitsuji, “General Relativity solutions in modified gravity,” Phys. Lett. B 781 (2018) 728–734, arXiv:1804.01731 [gr-qc].
- T. Kobayashi, H. Motohashi, and T. Suyama, “Black hole perturbation in the most general scalar-tensor theory with second-order field equations II: the even-parity sector,” Phys. Rev. D 89 (2014) no. 8, 084042, arXiv:1402.6740 [gr-qc].
- O. J. Tattersall, P. G. Ferreira, and M. Lagos, “General theories of linear gravitational perturbations to a Schwarzschild Black Hole,” Phys. Rev. D 97 (2018) no. 4, 044021, arXiv:1711.01992 [gr-qc].
- G. Franciolini, L. Hui, R. Penco, L. Santoni, and E. Trincherini, “Effective Field Theory of Black Hole Quasinormal Modes in Scalar-Tensor Theories,” JHEP 02 (2019) 127, arXiv:1810.07706 [hep-th].
- S. Datta and S. Bose, “Quasi-normal Modes of Static Spherically Symmetric Black Holes in f(R)𝑓𝑅f(R)italic_f ( italic_R ) Theory,” Eur. Phys. J. C 80 (2020) no. 1, 14, arXiv:1904.01519 [gr-qc].
- J. Khoury, M. Trodden, and S. S. C. Wong, “Existence and instability of hairy black holes in shift-symmetric Horndeski theories,” JCAP 11 (2020) 044, arXiv:2007.01320 [astro-ph.CO].
- R. C. Bernardo and I. Vega, “Stealth black hole perturbations in kinetic gravity braiding,” J. Math. Phys. 62 (2021) no. 7, 072501, arXiv:2007.06006 [gr-qc].
- D. Langlois, K. Noui, and H. Roussille, “Linear perturbations of Einstein-Gauss-Bonnet black holes,” JCAP 09 (2022) 019, arXiv:2204.04107 [gr-qc].
- M. Minamitsuji, K. Takahashi, and S. Tsujikawa, “Linear stability of black holes in shift-symmetric Horndeski theories with a time-independent scalar field,” Phys. Rev. D 105 (2022) no. 10, 104001, arXiv:2201.09687 [gr-qc].
- L. Hui, A. Podo, L. Santoni, and E. Trincherini, “Effective Field Theory for the perturbations of a slowly rotating black hole,” JHEP 12 (2021) 183, arXiv:2111.02072 [hep-th].
- C. de Rham and J. Zhang, “Perturbations of stealth black holes in degenerate higher-order scalar-tensor theories,” Phys. Rev. D 100 (2019) no. 12, 124023, arXiv:1907.00699 [hep-th].
- D. Langlois, K. Noui, and H. Roussille, “Black hole perturbations in modified gravity,” Phys. Rev. D 104 (2021) no. 12, 124044, arXiv:2103.14750 [gr-qc].
- K. Glampedakis and H. O. Silva, “Eikonal quasinormal modes of black holes beyond General Relativity,” Phys. Rev. D 100 (2019) no. 4, 044040, arXiv:1906.05455 [gr-qc].
- C.-Y. Chen and S. Park, “Black hole quasinormal modes and isospectrality in Deser-Woodard nonlocal gravity,” Phys. Rev. D 103 (2021) no. 6, 064029, arXiv:2101.06600 [gr-qc].
- C.-Y. Chen, M. Bouhmadi-López, and P. Chen, “Lessons from black hole quasinormal modes in modified gravity,” Eur. Phys. J. Plus 136 (2021) no. 2, 253, arXiv:2103.01249 [gr-qc].
- T. P. Sotiriou and S.-Y. Zhou, “Black hole hair in generalized scalar-tensor gravity: An explicit example,” Phys. Rev. D 90 (2014) 124063, arXiv:1408.1698 [gr-qc].
- O. J. Tattersall, “Quasi-Normal Modes of Hairy Scalar Tensor Black Holes: Odd Parity,” Class. Quant. Grav. 37 (2020) no. 11, 115007, arXiv:1911.07593 [gr-qc].
- T. Kobayashi, H. Motohashi, and T. Suyama, “Black hole perturbation in the most general scalar-tensor theory with second-order field equations I: the odd-parity sector,” Phys. Rev. D 85 (2012) 084025, arXiv:1202.4893 [gr-qc]. [Erratum: Phys.Rev.D 96, 109903 (2017)].
- A. Ganguly, R. Gannouji, M. Gonzalez-Espinoza, and C. Pizarro-Moya, “Black hole stability under odd-parity perturbations in Horndeski gravity,” Class. Quant. Grav. 35 (2018) no. 14, 145008, arXiv:1710.07669 [gr-qc].
- E. Berti, A. Sesana, E. Barausse, V. Cardoso, and K. Belczynski, “Spectroscopy of Kerr black holes with Earth- and space-based interferometers,” Phys. Rev. Lett. 117 (2016) no. 10, 101102, arXiv:1605.09286 [gr-qc].
- V. Ferrari and B. Mashhoon, “New approach to the quasinormal modes of a black hole,” Phys. Rev. D 30 (1984) 295–304.
- C. J. Goebel, “Comments on the “vibrations” of a Black Hole.,” ApJ 172 (1972) L95.
- B. F. Schutz and C. M. Will, “Black hole normal modes - A semianalytic approach,” ApJ 291 (1985) L33–L36.
- L. Motl and A. Neitzke, “Asymptotic black hole quasinormal frequencies,” Adv. Theor. Math. Phys. 7 (2003) no. 2, 307–330, arXiv:hep-th/0301173.
- G. T. Horowitz and V. E. Hubeny, “Quasinormal modes of AdS black holes and the approach to thermal equilibrium,” Phys. Rev. D 62 (2000) 024027, arXiv:hep-th/9909056.
- E. Berti, V. Cardoso, and P. Pani, “Breit-Wigner resonances and the quasinormal modes of anti-de Sitter black holes,” Phys. Rev. D 79 (2009) 101501, arXiv:0903.5311 [gr-qc].
- E. W. Leaver, “An Analytic representation for the quasi normal modes of Kerr black holes,” Proc. Roy. Soc. Lond. A 402 (1985) 285–298.
- V. Cardoso, M. Kimura, A. Maselli, E. Berti, C. F. B. Macedo, and R. McManus, “Parametrized black hole quasinormal ringdown: Decoupled equations for nonrotating black holes,” Phys. Rev. D 99 (2019) no. 10, 104077, arXiv:1901.01265 [gr-qc].
- E. Berti, V. Cardoso, and C. M. Will, “On gravitational-wave spectroscopy of massive black holes with the space interferometer LISA,” Phys. Rev. D 73 (2006) 064030, arXiv:gr-qc/0512160.
- “Ringdown data.” https://centra.tecnico.ulisboa.pt/network/grit/files/ringdown/.
- E. Berti, “Ringdown data.” https://pages.jh.edu/eberti2/ringdown/.
- L. London, D. Shoemaker, and J. Healy, “Modeling ringdown: Beyond the fundamental quasinormal modes,” Phys. Rev. D 90 (2014) no. 12, 124032, arXiv:1404.3197 [gr-qc]. [Erratum: Phys.Rev.D 94, 069902 (2016)].
- E. Berti, J. Cardoso, V. Cardoso, and M. Cavaglia, “Matched-filtering and parameter estimation of ringdown waveforms,” Phys. Rev. D 76 (2007) 104044, arXiv:0707.1202 [gr-qc].
- E. Berti, V. Cardoso, J. A. Gonzalez, U. Sperhake, M. Hannam, S. Husa, and B. Bruegmann, “Inspiral, merger and ringdown of unequal mass black hole binaries: A Multipolar analysis,” Phys. Rev. D 76 (2007) 064034, arXiv:gr-qc/0703053.
- S. Bhagwat, M. Cabero, C. D. Capano, B. Krishnan, and D. A. Brown, “Detectability of the subdominant mode in a binary black hole ringdown,” Phys. Rev. D 102 (2020) no. 2, 024023, arXiv:1910.13203 [gr-qc].
- S. Bhagwat, X. J. Forteza, P. Pani, and V. Ferrari, “Ringdown overtones, black hole spectroscopy, and no-hair theorem tests,” Phys. Rev. D 101 (2020) no. 4, 044033, arXiv:1910.08708 [gr-qc].
- I. Kamaretsos, M. Hannam, S. Husa, and B. S. Sathyaprakash, “Black-hole hair loss: learning about binary progenitors from ringdown signals,” Phys. Rev. D 85 (2012) 024018, arXiv:1107.0854 [gr-qc].
- V. Baibhav, E. Berti, and V. Cardoso, “LISA parameter estimation and source localization with higher harmonics of the ringdown,” Phys. Rev. D 101 (2020) no. 8, 084053, arXiv:2001.10011 [gr-qc].
- P. C. Peters, “Gravitational radiation and the motion of two point masses,” Phys. Rev. 136 (1964) B1224–B1232. https://link.aps.org/doi/10.1103/PhysRev.136.B1224.
- I. Hinder, B. Vaishnav, F. Herrmann, D. M. Shoemaker, and P. Laguna, “Circularization and final spin in eccentric binary-black-hole inspirals,” Phys. Rev. D 77 (2008) 081502. https://link.aps.org/doi/10.1103/PhysRevD.77.081502.
- O. J. Tattersall, “Kerr–(anti–)de Sitter black holes: Perturbations and quasinormal modes in the slow rotation limit,” Phys. Rev. D 98 (2018) no. 10, 104013, arXiv:1808.10758 [gr-qc].
- P. Pani, V. Cardoso, L. Gualtieri, E. Berti, and A. Ishibashi, “Perturbations of slowly rotating black holes: massive vector fields in the Kerr metric,” Phys. Rev. D 86 (2012) 104017, arXiv:1209.0773 [gr-qc].
- P. PANI, “Advanced methods in black-hole perturbation theory,” International Journal of Modern Physics A 28 (2013) no. 22n23, 1340018, https://doi.org/10.1142/S0217751X13400186. https://doi.org/10.1142/S0217751X13400186.
- P. Pani, E. Berti, and L. Gualtieri, “Scalar, Electromagnetic and Gravitational Perturbations of Kerr-Newman Black Holes in the Slow-Rotation Limit,” Phys. Rev. D 88 (2013) 064048, arXiv:1307.7315 [gr-qc].
- R. Brito, V. Cardoso, and P. Pani, “Massive spin-2 fields on black hole spacetimes: Instability of the Schwarzschild and Kerr solutions and bounds on the graviton mass,” Phys. Rev. D 88 (2013) no. 2, 023514, arXiv:1304.6725 [gr-qc].
- M. Khodadi, A. Allahyari, S. Vagnozzi, and D. F. Mota, “Black holes with scalar hair in light of the Event Horizon Telescope,” JCAP 09 (2020) 026, arXiv:2005.05992 [gr-qc].
- G. Antoniou, A. Papageorgiou, and P. Kanti, “Constraining modified gravity theories with scalar fields using black-hole images,” arXiv:2210.17533 [gr-qc].
- E. E. Flanagan and S. A. Hughes, “Measuring gravitational waves from binary black hole coalescences: 1. Signal-to-noise for inspiral, merger, and ringdown,” Phys. Rev. D 57 (1998) 4535–4565, arXiv:gr-qc/9701039.
- H. Nakano, R. Fujita, S. Isoyama, and N. Sago, “Scope out multiband gravitational-wave observations of GW190521-like binary black holes with space gravitational wave antenna B-DECIGO,” Universe 7 (2021) no. 3, 53, arXiv:2101.06402 [gr-qc].
- E. D. Hall, “Cosmic Explorer: A Next-Generation Ground-Based Gravitational-Wave Observatory,” Galaxies 10 (2022) no. 4, 90.
- R. Nair and T. Tanaka, “Synergy between ground and space based gravitational wave detectors. Part II: Localisation,” JCAP 08 (2018) 033, arXiv:1805.08070 [gr-qc]. [Erratum: JCAP 11, E01 (2018)].
- C. Zhang, Y. Gong, and C. Zhang, “Parameter estimation for space-based gravitational wave detectors with ringdown signals,” Phys. Rev. D 104 (2021) no. 8, 083038, arXiv:2105.11279 [gr-qc].
- LDC Working Group Collaboration, Q. Baghi, “The LISA Data Challenges,” in 56th Rencontres de Moriond on Gravitation. 4, 2022. arXiv:2204.12142 [gr-qc].
- I. Kamaretsos, M. Hannam, and B. Sathyaprakash, “Is black-hole ringdown a memory of its progenitor?,” Phys. Rev. Lett. 109 (2012) 141102, arXiv:1207.0399 [gr-qc].
- V. Baibhav, E. Berti, V. Cardoso, and G. Khanna, “Black Hole Spectroscopy: Systematic Errors and Ringdown Energy Estimates,” Phys. Rev. D 97 (2018) no. 4, 044048, arXiv:1710.02156 [gr-qc].
- E. Thrane, P. D. Lasky, and Y. Levin, “Challenges testing the no-hair theorem with gravitational waves,” Phys. Rev. D 96 (2017) no. 10, 102004, arXiv:1706.05152 [gr-qc].
- S. Bhagwat, M. Okounkova, S. W. Ballmer, D. A. Brown, M. Giesler, M. A. Scheel, and S. A. Teukolsky, “On choosing the start time of binary black hole ringdowns,” Phys. Rev. D 97 (2018) no. 10, 104065, arXiv:1711.00926 [gr-qc].
- J. Noller, L. Santoni, E. Trincherini, and L. G. Trombetta, “Black Hole Ringdown as a Probe for Dark Energy,” Phys. Rev. D 101 (2020) 084049, arXiv:1911.11671 [gr-qc].
- J. C. Aurrekoetxea, P. G. Ferreira, K. Clough, E. A. Lim, and O. J. Tattersall, “Where is the ringdown? Reconstructing quasinormal modes from dispersive waves,” arXiv:2205.15878 [gr-qc].
- U. Sperhake, C. J. Moore, R. Rosca, M. Agathos, D. Gerosa, and C. D. Ott, “Long-lived inverse chirp signals from core collapse in massive scalar-tensor gravity,” Phys. Rev. Lett. 119 (2017) no. 20, 201103, arXiv:1708.03651 [gr-qc].
- R. Rosca-Mead, U. Sperhake, C. J. Moore, M. Agathos, D. Gerosa, and C. D. Ott, “Core collapse in massive scalar-tensor gravity,” Phys. Rev. D 102 (2020) no. 4, 044010, arXiv:2005.09728 [gr-qc].
- H. Yang, K. Yagi, J. Blackman, L. Lehner, V. Paschalidis, F. Pretorius, and N. Yunes, “Black hole spectroscopy with coherent mode stacking,” Phys. Rev. Lett. 118 (2017) no. 16, 161101, arXiv:1701.05808 [gr-qc].
- R. Brito, A. Buonanno, and V. Raymond, “Black-hole Spectroscopy by Making Full Use of Gravitational-Wave Modeling,” Phys. Rev. D 98 (2018) no. 8, 084038, arXiv:1805.00293 [gr-qc].
- A. L. Erickcek, M. Kamionkowski, and A. J. Benson, “Supermassive Black Hole Merger Rates: Uncertainties from Halo Merger Theory,” Mon. Not. Roy. Astron. Soc. 371 (2006) 1992–2000, arXiv:astro-ph/0604281.
- J. Bamber, O. J. Tattersall, K. Clough, and P. G. Ferreira, “Quasinormal modes of growing dirty black holes,” Phys. Rev. D 103 (2021) no. 12, 124013, arXiv:2103.00026 [gr-qc].
- J. Bamber, J. C. Aurrekoetxea, K. Clough, and P. G. Ferreira, “Black hole merger simulations in wave dark matter environments,” arXiv:2210.09254 [gr-qc].
- P. T. Leung, Y. T. Liu, W. M. Suen, C. Y. Tam, and K. Young, “Quasinormal modes of dirty black holes,” Phys. Rev. Lett. 78 (1997) 2894–2897, arXiv:gr-qc/9903031.
- A. Nagar, O. Zanotti, J. A. Font, and L. Rezzolla, “Accretion-induced quasinormal mode excitation of a schwarzschild black hole,” Phys. Rev. D 75 (2007) 044016. https://link.aps.org/doi/10.1103/PhysRevD.75.044016.
- A. J. M. Medved, D. Martin, and M. Visser, “Dirty black holes: Quasinormal modes for ’squeezed’ horizons,” Class. Quant. Grav. 21 (2004) 2393–2405, arXiv:gr-qc/0310097.
- E. Barausse, V. Cardoso, and P. Pani, “Can environmental effects spoil precision gravitational-wave astrophysics?,” Phys. Rev. D 89 (2014) no. 10, 104059, arXiv:1404.7149 [gr-qc].
- A. B. Nielsen and O. Birnholz, “Gravitational wave bounds on dirty black holes,” Astronomische Nachrichten 340 (2019) no. 1-3, 116–120.
- J. Matyjasek, “Quasinormal modes of dirty black holes in the effective theory of gravity with a third order curvature term,” Phys. Rev. D 102 (2020) no. 12, 124046, arXiv:2009.10793 [gr-qc].
- C. de Rham and A. J. Tolley, “Speed of gravity,” Phys. Rev. D 101 (2020) no. 6, 063518, arXiv:1909.00881 [hep-th].
- S. Melville and J. Noller, “Positivity in the Sky: Constraining dark energy and modified gravity from the UV,” Phys. Rev. D 101 (2020) no. 2, 021502, arXiv:1904.05874 [astro-ph.CO].
- J. M. ”Martín-García, “xAct.” http://www.xact.es/.
- R. C. Bernardo, “notebooks.” https://github.com/reggiebernardo/notebooks.
- R. C. Bernardo, “Gravitational wave signatures from dark sector interactions,” Phys. Rev. D 104 (2021) no. 2, 024070, arXiv:2103.02311 [gr-qc].