Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sequential Graph Attention Learning for Predicting Dynamic Stock Trends (Student Abstract) (2301.10153v1)

Published 15 Jan 2023 in q-fin.ST and cs.LG

Abstract: The stock market is characterized by a complex relationship between companies and the market. This study combines a sequential graph structure with attention mechanisms to learn global and local information within temporal time. Specifically, our proposed "GAT-AGNN" module compares model performance across multiple industries as well as within single industries. The results show that the proposed framework outperforms the state-of-the-art methods in predicting stock trends across multiple industries on Taiwan Stock datasets.

Citations (3)

Summary

We haven't generated a summary for this paper yet.