Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Radar Sensing via OTFS Signaling: A Delay Doppler Signal Processing Perspective (2301.09909v2)

Published 24 Jan 2023 in eess.SP

Abstract: The recently proposed orthogonal time frequency space (OTFS) modulation multiplexes data symbols in the delay-Doppler (DD) domain. Since the range and velocity, which can be derived from the delay and Doppler shifts, are the parameters of interest for radar sensing, it is natural to consider implementing DD signal processing for radar sensing. In this paper, we investigate the potential connections between the OTFS and DD domain radar signal processing. Our analysis shows that the range-Doppler matrix computing process in radar sensing is exactly the demodulation of OTFS with a rectangular pulse shaping filter. Furthermore, we propose a two-dimensional (2D) correlation-based algorithm to estimate the fractional delay and Doppler parameters for radar sensing. Simulation results show that the proposed algorithm can efficiently obtain the delay and Doppler shifts associated with multiple targets.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (13)
  1. F. Liu, Y. Cui, C. Masouros, J. Xu, T. X. Han, Y. C. Eldar, and S. Buzzi, “Integrated Sensing and Communications: Toward Dual-Functional Wireless Networks for 6G and Beyond,” IEEE J. Sel. Areas Commun., vol. 40, no. 6, pp. 1728–1767, jun 2022.
  2. A. R. Chiriyath, B. Paul, and D. W. Bliss, “Radar-communications convergence: Coexistence, cooperation, and co-design,” IEEE Trans. Cogn. Commun. Netw., vol. 3, no. 1, pp. 1–12, 2017.
  3. Z. Wei, W. Yuan, S. Li, J. Yuan, G. Bharatula, R. Hadani, and L. Hanzo, “Orthogonal Time-Frequency Space Modulation: A Promising Next-Generation Waveform,” IEEE Wireless Commun., vol. 28, no. 4, pp. 136–144, 2021.
  4. R. Hadani, S. Rakib, M. Tsatsanis, A. Monk, A. J. Goldsmith, A. F. Molisch, and R. Calderbank, “Orthogonal time frequency space modulation,” 2017 IEEE Wirel. Commun. Netw. Conf., pp. 1–13, 2017.
  5. X. G. Xia, “Precoded OFDM systems robust to spectral null channels and vector OFDM systems with reduced cyclic prefix length,” IEEE International Conference on Communications, vol. 2, pp. 1110–1114, 2000.
  6. K. Wu, J. A. Zhang, X. Huang, and Y. J. Guo, “OTFS-Based Joint Communication and Sensing for Future Industrial IoT,” IEEE Internet of Things Journal, vol. 10, no. 3, pp. 1973–1989, 2023.
  7. G. Surabhi, R. M. Augustine, and A. Chockalingam, “Peak-to-average power ratio of OTFS modulation,” IEEE Commun. Lett., vol. 23, no. 6, pp. 999–1002, 2019.
  8. L. Gaudio, M. Kobayashi, G. Caire, and G. Colavolpe, “On the Effectiveness of OTFS for Joint Radar Parameter Estimation and Communication,” IEEE Trans. Wireless Commun., vol. 19, no. 9, pp. 5951–5965, 2020.
  9. P. Raviteja, K. T. Phan, Y. Hong, and E. Viterbo, “Orthogonal time frequency space (otfs) modulation based radar system,” in 2019 IEEE Radar Conf. (RadarConf), 2019, pp. 1–6.
  10. A. S. Bondre and C. D. Richmond, “Dual-Use of OTFS Architecture for Pulse Doppler Radar Processing,” in 2022 IEEE Radar Conf. (RadarConf22).   IEEE, 2022, pp. 1–6.
  11. Z. Wei, W. Yuan, S. Li, J. Yuan, and D. W. K. Ng, “Transmitter and Receiver Window Designs for Orthogonal Time-Frequency Space Modulation,” IEEE Trans. Commun., vol. 69, no. 4, pp. 2207–2223, 2021.
  12. S. Li, W. Yuan, Z. Wei, J. Yuan, B. Bai, D. W. K. Ng, and Y. Xie, “Hybrid MAP and PIC Detection for OTFS Modulation,” IEEE Trans. Veh. Technol., vol. 70, no. 7, pp. 7193–7198, jul 2021.
  13. P. Raviteja, K. T. Phan, Y. Hong, and E. Viterbo, “Interference Cancellation and Iterative Detection for Orthogonal Time Frequency Space Modulation,” IEEE Trans. Wireless Commun., vol. 17, no. 10, pp. 6501–6515, 2018.
Citations (21)

Summary

We haven't generated a summary for this paper yet.