Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

4-clique Network Minor Embedding for Quantum Annealers (2301.08807v4)

Published 20 Jan 2023 in quant-ph, cond-mat.dis-nn, cs.ET, and math.CO

Abstract: Quantum annealing is a quantum algorithm for computing solutions to combinatorial optimization problems. This study proposes a method for minor embedding optimization problems onto sparse quantum annealing hardware graphs called 4-clique network minor embedding. This method is in contrast to the standard minor embedding technique of using a path of linearly connected qubits in order to represent a logical variable state. The 4-clique minor embedding is possible on Pegasus graph connectivity, which is the native hardware graph for some of the current D-Wave quantum annealers. The Pegasus hardware graph contains many cliques of size 4, making it possible to form a graph composed entirely of paths of connected 4-cliques on which a problem can be minor embedded. The 4-clique chains come at the cost of additional qubit usage on the hardware graph, but they allow for stronger coupling within each chain thereby increasing chain integrity, reducing chain breaks, and allow for greater usage of the available energy scale for programming logical problem coefficients on current quantum annealers. The 4-clique minor embedding technique is compared against the standard linear path minor embedding with experiments on two D-Wave quantum annealing processors with Pegasus hardware graphs. We show proof of concept experiments where the 4-clique minor embeddings can use weak chain strengths while successfully carrying out the computation of minimizing random all-to-all spin glass problem instances.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (48)
  1. “Quantum Computation by Adiabatic Evolution” arXiv, 2000 DOI: 10.48550/ARXIV.QUANT-PH/0001106
  2. “Mathematical foundation of quantum annealing” In Journal of Mathematical Physics 49.12 American Institute of Physics, 2008, pp. 125210 DOI: 10.1063/1.2995837
  3. Arnab Das and Bikas K Chakrabarti “Colloquium: Quantum annealing and analog quantum computation” In Reviews of Modern Physics 80.3 APS, 2008, pp. 1061 DOI: 10.1103/revmodphys.80.1061
  4. “Perspectives of quantum annealing: methods and implementations” In Reports on Progress in Physics 83.5 IOP Publishing, 2020, pp. 054401 DOI: 10.1088/1361-6633/ab85b8
  5. “Entanglement in a Quantum Annealing Processor” In Phys. Rev. X 4 American Physical Society, 2014, pp. 021041 DOI: 10.1103/PhysRevX.4.021041
  6. Giuseppe E Santoro and Erio Tosatti “Optimization using quantum mechanics: quantum annealing through adiabatic evolution” In Journal of Physics A: Mathematical and General 39.36, 2006, pp. R393 DOI: 10.1088/0305-4470/39/36/R01
  7. “Quantum annealing with manufactured spins” In Nature 473.7346 Nature Publishing Group, 2011, pp. 194–198 DOI: 10.1038/nature10012
  8. “Experimental signature of programmable quantum annealing” In Nature communications 4.1 Nature Publishing Group, 2013, pp. 1–8 DOI: 10.1038/ncomms3067
  9. “Quantum Optimization of Fully Connected Spin Glasses” In Phys. Rev. X 5 American Physical Society, 2015, pp. 031040 DOI: 10.1103/PhysRevX.5.031040
  10. “Quantum Optimization for the Graph Coloring Problem with Space-Efficient Embedding” In 2020 IEEE International Conference on Quantum Computing and Engineering (QCE), 2020, pp. 56–62 DOI: 10.1109/QCE49297.2020.00018
  11. “On the Emerging Potential of Quantum Annealing Hardware for Combinatorial Optimization” arXiv, 2022 DOI: 10.48550/ARXIV.2210.04291
  12. Humberto Munoz Bauza and Daniel A. Lidar “Scaling Advantage in Approximate Optimization with Quantum Annealing”, 2024 arXiv:2401.07184 [quant-ph]
  13. Tameem Albash and Daniel A. Lidar “Demonstration of a Scaling Advantage for a Quantum Annealer over Simulated Annealing” In Physical Review X 8.3 American Physical Society (APS), 2018 DOI: 10.1103/physrevx.8.031016
  14. Elijah Pelofske, Georg Hahn and Hristo N. Djidjev “Parallel quantum annealing” In Scientific Reports 12.1 Springer ScienceBusiness Media LLC, 2022 DOI: 10.1038/s41598-022-08394-8
  15. “Scaling advantage over path-integral Monte Carlo in quantum simulation of geometrically frustrated magnets” In Nature Communications 12.1 Springer ScienceBusiness Media LLC, 2021 DOI: 10.1038/s41467-021-20901-5
  16. “Qubit spin ice” In Science 373.6554 American Association for the Advancement of Science (AAAS), 2021, pp. 576–580 DOI: 10.1126/science.abe2824
  17. “Kagome qubit ice” In Nature Communications 14.1 Springer ScienceBusiness Media LLC, 2023 DOI: 10.1038/s41467-023-36760-1
  18. Christine Klymko, Blair D Sullivan and Travis S Humble “Adiabatic quantum programming: minor embedding with hard faults” In Quantum information processing 13.3 Springer, 2014, pp. 709–729 DOI: 10.1007/s11128-013-0683-9
  19. “Integer programming techniques for minor-embedding in quantum annealers” In International Conference on Integration of Constraint Programming, Artificial Intelligence, and Operations Research, 2020, pp. 112–129 Springer DOI: 10.1007/978-3-030-58942-4˙8
  20. Vicky Choi “Minor-embedding in adiabatic quantum computation: II. Minor-universal graph design” In Quantum Information Processing 10.3 Springer, 2011, pp. 343–353 DOI: 10.1007/s11128-010-0200-3
  21. Vicky Choi “Minor-embedding in adiabatic quantum computation: I. The parameter setting problem” In Quantum Information Processing 7.5 Springer, 2008, pp. 193–209 DOI: 10.1007/s11128-008-0082-9
  22. Tomas Boothby, Andrew D King and Aidan Roy “Fast clique minor generation in Chimera qubit connectivity graphs” In Quantum Information Processing 15.1 Springer, 2016, pp. 495–508 DOI: 10.1007/s11128-015-1150-6
  23. “Embedding Overhead Scaling of Optimization Problems in Quantum Annealing” In PRX Quantum 2 American Physical Society, 2021, pp. 040322 DOI: 10.1103/PRXQuantum.2.040322
  24. “Embedding algorithms for quantum annealers with chimera and pegasus connection topologies” In International Conference on High Performance Computing, 2020, pp. 187–206 Springer
  25. Andrew Lucas “Hard combinatorial problems and minor embeddings on lattice graphs” In Quantum Information Processing 18.7 Springer, 2019, pp. 1–38 DOI: 10.1007/s11128-019-2323-5
  26. “Next-Generation Topology of D-Wave Quantum Processors” arXiv, 2020 DOI: 10.48550/ARXIV.2003.00133
  27. Nike Dattani, Szilard Szalay and Nick Chancellor “Pegasus: The second connectivity graph for large-scale quantum annealing hardware” arXiv, 2019 DOI: 10.48550/ARXIV.1901.07636
  28. “Architectural considerations in the design of a third-generation superconducting quantum annealing processor”, 2021 arXiv:2108.02322 [quant-ph]
  29. Elisabeth Lobe, Lukas Schürmann and Tobias Stollenwerk “Embedding of complete graphs in broken Chimera graphs” In Quantum Information Processing 20.7 Springer ScienceBusiness Media LLC, 2021 DOI: 10.1007/s11128-021-03168-z
  30. “DWave Networkx Zephyr Graph”, https://web.archive.org/web/20230608182151/https://docs.ocean.dwavesys.com/en/stable/docs_dnx/reference/generated/dwave_networkx.zephyr_graph.html
  31. Kristen L Pudenz, Tameem Albash and Daniel A Lidar “Quantum annealing correction for random Ising problems” In Physical Review A 91.4 APS, 2015, pp. 042302 DOI: 10.1103/PhysRevA.91.042302
  32. “Quantum annealing correction with minor embedding” In Physical Review A 92.4 APS, 2015, pp. 042310 DOI: 10.1103/PhysRevA.92.042310
  33. Walter Vinci, Tameem Albash and Daniel A Lidar “Nested quantum annealing correction” In npj Quantum Information 2.1 Nature Publishing Group, 2016, pp. 1–6 DOI: 10.1038/npjqi.2016.17
  34. Anurag Mishra, Tameem Albash and Daniel A Lidar “Performance of two different quantum annealing correction codes” In Quantum Information Processing 15.2 Springer, 2016, pp. 609–636 DOI: 10.1007/s11128-015-1201-z
  35. Kristen L Pudenz, Tameem Albash and Daniel A Lidar “Error-corrected quantum annealing with hundreds of qubits” In Nature communications 5.1 Nature Publishing Group, 2014, pp. 1–10 DOI: 10.1038/ncomms4243
  36. “Nested quantum annealing correction at finite temperature: p-spin models” In Physical Review A 99.6 American Physical Society (APS), 2019 DOI: 10.1103/physreva.99.062307
  37. “Quantum-annealing correction at finite temperature: Ferromagnetic p-spin models” In Physical Review A 95.2 American Physical Society (APS), 2017 DOI: 10.1103/physreva.95.022308
  38. Thomas A Caswell “matplotlib/matplotlib” DOI: 10.5281/zenodo.5194481
  39. J. D. Hunter “Matplotlib: A 2D graphics environment” In Computing in Science & Engineering 9.3, 2007, pp. 90–95 DOI: 10.1109/MCSE.2007.55
  40. Aric Hagberg, Pieter Swart and Daniel S Chult “Exploring network structure, dynamics, and function using NetworkX”, 2008
  41. “D-Wave NetworkX”, https://web.archive.org/web/20230401000000*/https://github.com/dwavesystems/dwave-networkx
  42. Elijah Pelofske “Dataset for 4-clique network minor embedding for quantum annealers” Zenodo, 2023 DOI: 10.5281/zenodo.7552776
  43. “Networkx connected components”, https://web.archive.org/web/20230907060839/https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.components.connected_components.html
  44. Jun Cai, William G. Macready and Aidan Roy “A practical heuristic for finding graph minors” arXiv, 2014 DOI: 10.48550/ARXIV.1406.2741
  45. “minorminer”, https://web.archive.org/web/20230401000000*/https://github.com/dwavesystems/minorminer
  46. “Solvable Model of a Spin-Glass” In Phys. Rev. Lett. 35 American Physical Society, 1975, pp. 1792–1796 DOI: 10.1103/PhysRevLett.35.1792
  47. “Tutorial: Calibration refinement in quantum annealing” In arXiv preprint, 2023 arXiv:2304.10352
  48. “D-Wave Error-Correction Features”, https://web.archive.org/web/20240000000000*/https://docs.dwavesys.com/docs/latest/c_qpu_error_correction.html
Citations (6)

Summary

We haven't generated a summary for this paper yet.