Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Asynchronous Intensity Representation for Framed and Event Video Sources (2301.08783v1)

Published 20 Jan 2023 in cs.CV and cs.MM

Abstract: Neuromorphic "event" cameras, designed to mimic the human vision system with asynchronous sensing, unlock a new realm of high-speed and high dynamic range applications. However, researchers often either revert to a framed representation of event data for applications, or build bespoke applications for a particular camera's event data type. To usher in the next era of video systems, accommodate new event camera designs, and explore the benefits to asynchronous video in classical applications, we argue that there is a need for an asynchronous, source-agnostic video representation. In this paper, we introduce a novel, asynchronous intensity representation for both framed and non-framed data sources. We show that our representation can increase intensity precision and greatly reduce the number of samples per pixel compared to grid-based representations. With framed sources, we demonstrate that by permitting a small amount of loss through the temporal averaging of similar pixel values, we can reduce our representational sample rate by more than half, while incurring a drop in VMAF quality score of only 4.5. We also demonstrate lower latency than the state-of-the-art method for fusing and transcoding framed and event camera data to an intensity representation, while maintaining $2000\times$ the temporal resolution. We argue that our method provides the computational efficiency and temporal granularity necessary to build real-time intensity-based applications for event cameras.

Citations (4)

Summary

We haven't generated a summary for this paper yet.