Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hybrid Open-set Segmentation with Synthetic Negative Data (2301.08555v3)

Published 19 Jan 2023 in cs.CV

Abstract: Open-set segmentation can be conceived by complementing closed-set classification with anomaly detection. Many of the existing dense anomaly detectors operate through generative modelling of regular data or by discriminating with respect to negative data. These two approaches optimize different objectives and therefore exhibit different failure modes. Consequently, we propose a novel anomaly score that fuses generative and discriminative cues. Our score can be implemented by upgrading any closed-set segmentation model with dense estimates of dataset posterior and unnormalized data likelihood. The resulting dense hybrid open-set models require negative training images that can be sampled from an auxiliary negative dataset, from a jointly trained generative model, or from a mixture of both sources. We evaluate our contributions on benchmarks for dense anomaly detection and open-set segmentation. The experiments reveal strong open-set performance in spite of negligible computational overhead.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (90)
  1. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, 2016, pp. 770–778.
  2. Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo, “Swin transformer: Hierarchical vision transformer using shifted windows,” in International Conference on Computer Vision, 2021.
  3. M. Everingham, L. V. Gool, C. K. I. Williams, J. M. Winn, and A. Zisserman, “The pascal visual object classes (VOC) challenge,” Int. J. Comput. Vis., vol. 88, no. 2, pp. 303–338, 2010.
  4. C. Farabet, C. Couprie, L. Najman, and Y. LeCun, “Learning hierarchical features for scene labeling,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 8, pp. 1915–1929, 2013.
  5. S. Minaee, Y. Boykov, F. Porikli, A. Plaza, N. Kehtarnavaz, and D. Terzopoulos, “Image segmentation using deep learning: A survey,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 44, no. 7, 2022.
  6. E. Shelhamer, J. Long, and T. Darrell, “Fully convolutional networks for semantic segmentation,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 39, no. 4, pp. 640–651, 2017.
  7. L. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, “Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 40, no. 4, pp. 834–848, 2018.
  8. R. Strudel, R. G. Pinel, I. Laptev, and C. Schmid, “Segmenter: Transformer for semantic segmentation,” in 2021 IEEE/CVF International Conference on Computer Vision.   IEEE, 2021, pp. 7242–7252.
  9. X. Li, A. You, Z. Zhu, H. Zhao, M. Yang, K. Yang, S. Tan, and Y. Tong, “Semantic flow for fast and accurate scene parsing,” in European Conference on Computer Vision, 2020.
  10. M. Orsic and S. Segvic, “Efficient semantic segmentation with pyramidal fusion,” Pattern Recognit., vol. 110, p. 107611, 2021.
  11. H. Pan, Y. Hong, W. Sun, and Y. Jia, “Deep dual-resolution networks for real-time and accurate semantic segmentation of traffic scenes,” IEEE Trans. on Intelligent Transportation Systems, 2022.
  12. H. Blum, P.-E. Sarlin, J. Nieto, R. Siegwart, and C. Cadena, “The fishyscapes benchmark: Measuring blind spots in semantic segmentation,” International Journal of Computer Vision, vol. 129, 2021.
  13. C. González, K. Gotkowski, M. Fuchs, A. Bucher, A. Dadras, R. Fischbach, I. J. Kaltenborn, and A. Mukhopadhyay, “Distance-based detection of out-of-distribution silent failures for covid-19 lung lesion segmentation,” Medical Image Anal., vol. 82, 2022.
  14. P. Pinggera, S. Ramos, S. Gehrig, U. Franke, C. Rother, and R. Mester, “Lost and found: detecting small road hazards for self-driving vehicles,” in International Conference on Intelligent Robots and Systems, IROS, 2016.
  15. L. Ruff, J. R. Kauffmann, R. A. Vandermeulen, G. Montavon, W. Samek, M. Kloft, T. G. Dietterich, and K. Müller, “A unifying review of deep and shallow anomaly detection,” Proc. IEEE, 2021.
  16. T. E. Boult, S. Cruz, A. R. Dhamija, M. Günther, J. Henrydoss, and W. J. Scheirer, “Learning and the unknown: Surveying steps toward open world recognition,” in AAAI Conference on Artificial Intelligence.   AAAI Press, 2019.
  17. P. Bevandić, I. Krešo, M. Oršić, and S. Šegvić, “Dense open-set recognition based on training with noisy negative images,” Image and Vision Computing, vol. 124, p. 104490, 2022.
  18. J. Cen, P. Yun, J. Cai, M. Y. Wang, and M. Liu, “Deep metric learning for open world semantic segmentation,” in International Conference on Computer Vision (ICCV), 2021.
  19. S. Kong and D. Ramanan, “Opengan: Open-set recognition via open data generation,” IEEE Trans. Pattern Anal. Mach. Intell., 2022.
  20. H. Blum, P. Sarlin, J. I. Nieto, R. Siegwart, and C. Cadena, “Fishyscapes: A benchmark for safe semantic segmentation in autonomous driving,” in 2019 IEEE/CVF International Conference on Computer Vision Workshops.   IEEE, 2019, pp. 2403–2412.
  21. X. Du, Z. Wang, M. Cai, and Y. Li, “VOS: learning what you don’t know by virtual outlier synthesis,” in The Tenth International Conference on Learning Representations, ICLR 2022, 2022.
  22. K. Lis, K. K. Nakka, P. Fua, and M. Salzmann, “Detecting the unexpected via image resynthesis,” in International Conference on Computer Vision, ICCV, 2019.
  23. G. D. Biase, H. Blum, R. Siegwart, and C. Cadena, “Pixel-wise anomaly detection in complex driving scenes,” in Computer Vision and Pattern Recognition, CVPR, 2021.
  24. T. Vojir, T. Šipka, R. Aljundi, N. Chumerin, D. O. Reino, and J. Matas, “Road anomaly detection by partial image reconstruction with segmentation coupling,” in International Conference on Computer Vision, ICCV, 2021.
  25. T. DeVries and G. W. Taylor, “Learning confidence for out-of-distribution detection in neural networks,” CoRR, 2018.
  26. A. Kendall and Y. Gal, “What uncertainties do we need in bayesian deep learning for computer vision?” in Neural Information Processing Systems, 2017.
  27. E. T. Nalisnick, A. Matsukawa, Y. W. Teh, D. Görür, and B. Lakshminarayanan, “Do deep generative models know what they don’t know?” in International Conference on Learning Representations, 2019.
  28. J. Serrà, D. Álvarez, V. Gómez, O. Slizovskaia, J. F. Núñez, and J. Luque, “Input complexity and out-of-distribution detection with likelihood-based generative models,” in 8th International Conference on Learning Representations, ICLR, 2020.
  29. T. Lucas, K. Shmelkov, K. Alahari, C. Schmid, and J. Verbeek, “Adaptive density estimation for generative models,” in Neural Information Processing Systems, 2019.
  30. L. H. Zhang, M. Goldstein, and R. Ranganath, “Understanding failures in out-of-distribution detection with deep generative models,” in International Conference on Machine Learning, ICML, 2021.
  31. R. Chan, M. Rottmann, and H. Gottschalk, “Entropy maximization and meta classification for out-of-distribution detection in semantic segmentation,” in International Conference on Computer Vision, ICCV, 2021.
  32. D. Hendrycks, M. Mazeika, and T. G. Dietterich, “Deep anomaly detection with outlier exposure,” in 7th International Conference on Learning Representations, ICLR, 2019.
  33. K. Lee, H. Lee, K. Lee, and J. Shin, “Training confidence-calibrated classifiers for detecting out-of-distribution samples,” in 6th International Conference on Learning Representations, ICLR, 2018.
  34. M. Grcic, P. Bevandic, and S. Segvic, “Densehybrid: Hybrid anomaly detection for dense open-set recognition,” in European Conference on Computer Vision, ECCV, 2022.
  35. V. Besnier, A. Bursuc, D. Picard, and A. Briot, “Triggering failures: Out-of-distribution detection by learning from local adversarial attacks in semantic segmentation,” in International Conference on Computer Vision, 2021.
  36. R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer, “High-resolution image synthesis with latent diffusion models,” in Computer Vision and Pattern Recognition, CVPR, 2022.
  37. D. Hendrycks and K. Gimpel, “A baseline for detecting misclassified and out-of-distribution examples in neural networks,” in 5th International Conference on Learning Representations, ICLR, 2017.
  38. S. Liang, Y. Li, and R. Srikant, “Enhancing the reliability of out-of-distribution image detection in neural networks,” in 6th International Conference on Learning Representations, ICLR, 2018.
  39. B. Lakshminarayanan, A. Pritzel, and C. Blundell, “Simple and scalable predictive uncertainty estimation using deep ensembles,” in Neural Information Processing Systems, 2017.
  40. A. R. Dhamija, M. Günther, and T. E. Boult, “Reducing network agnostophobia,” in Annual Conference on Neural Information Processing Systems 2018, NeurIPS, 2018.
  41. W. Liu, X. Wang, J. D. Owens, and Y. Li, “Energy-based out-of-distribution detection,” in NeurIPS, 2020.
  42. L. Neal, M. L. Olson, X. Z. Fern, W. Wong, and F. Li, “Open set learning with counterfactual images,” in ECCV 2018 - 15th European Conference, Munich, German, 2018.
  43. M. Grcić, P. Bevandić, and S. Šegvić, “Dense open-set recognition with synthetic outliers generated by real NVP,” in Int’l Conference on Computer Vision Theory and Applications, 2021.
  44. H. Zhang, A. Li, J. Guo, and Y. Guo, “Hybrid models for open set recognition,” in European Conference on Computer Vision, 2020.
  45. P. Bevandic, I. Kreso, M. Orsic, and S. Segvic, “Simultaneous semantic segmentation and outlier detection in presence of domain shift,” in 41st DAGM German Conference, DAGM GCPR, 2019.
  46. Y. Xia, Y. Zhang, F. Liu, W. Shen, and A. L. Yuille, “Synthesize then compare: Detecting failures and anomalies for semantic segmentation,” in European Conference on Computer Vision, ECCV, 2020.
  47. V. Zavrtanik, M. Kristan, and D. Skocaj, “Reconstruction by inpainting for visual anomaly detection,” Pattern Recognit., 2021.
  48. W. Grathwohl, K. Wang, J. Jacobsen, D. Duvenaud, M. Norouzi, and K. Swersky, “Your classifier is secretly an energy based model and you should treat it like one,” in International Conference on Learning Representations, ICLR, 2020.
  49. Z. Zhao, L. Cao, and K. Lin, “Revealing the distributional vulnerability of discriminators by implicit generators,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 45, no. 7, pp. 8888–8901, 2023.
  50. Y. Tian, Y. Liu, G. Pang, F. Liu, Y. Chen, and G. Carneiro, “Pixel-wise energy-biased abstention learning for anomaly segmentation on complex urban driving scenes,” in European Conference on Computer Vision, 2022.
  51. C. Liang, W. Wang, J. Miao, and Y. Yang, “Gmmseg: Gaussian mixture based generative semantic segmentation models,” Advances in Neural Information Processing Systems, 2022.
  52. W. J. Scheirer, A. de Rezende Rocha, A. Sapkota, and T. E. Boult, “Toward open set recognition,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 35, no. 7, pp. 1757–1772, 2013.
  53. W. J. Scheirer, L. P. Jain, and T. E. Boult, “Probability models for open set recognition,” IEEE Trans. Pattern Anal. Mach. Intell., 2014.
  54. A. Bendale and T. E. Boult, “Towards open set deep networks,” in IEEE Conference on Computer Vision and Pattern Recognition, 2016.
  55. S. Vaze, K. Han, A. Vedaldi, and A. Zisserman, “Open-set recognition: A good closed-set classifier is all you need,” in The Tenth International Conference on Learning Representations, ICLR 2022, 2022.
  56. G. Chen, P. Peng, X. Wang, and Y. Tian, “Adversarial reciprocal points learning for open set recognition,” IEEE Trans. Pattern Anal. Mach. Intell., 2022.
  57. C. Geng, S. Huang, and S. Chen, “Recent advances in open set recognition: A survey,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 43, no. 10, pp. 3614–3631, 2021.
  58. O. Zendel, K. Honauer, M. Murschitz, D. Steininger, and G. F. Dominguez, “Wilddash - creating hazard-aware benchmarks,” in European Conference on Computer Vision (ECCV), 2018.
  59. R. Chan, K. Lis, S. Uhlemeyer, H. Blum, S. Honari, R. Siegwart, P. Fua, M. Salzmann, and M. Rottmann, “Segmentmeifyoucan: A benchmark for anomaly segmentation,” in Neural Information Processing Systems Track on Datasets and Benchmarks, 2021.
  60. M. Sokolova and G. Lapalme, “A systematic analysis of performance measures for classification tasks,” Inf. Process. Manag., vol. 45, no. 4, pp. 427–437, 2009.
  61. M. D. Scherreik and B. D. Rigling, “Open set recognition for automatic target classification with rejection,” IEEE Trans. Aerosp. Electron. Syst., vol. 52, no. 2, pp. 632–642, 2016.
  62. C. Sakaridis, D. Dai, and L. V. Gool, “Map-guided curriculum domain adaptation and uncertainty-aware evaluation for semantic nighttime image segmentation,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 44, no. 6, 2022.
  63. N. Kumar, S. Segvic, A. Eslami, and S. Gumhold, “Normalizing flow based feature synthesis for outlier-aware object detection,” in IEEE/CVF Computer Vision and Pattern Recognition, CVPR, 2023.
  64. U. Michieli and P. Zanuttigh, “Knowledge distillation for incremental learning in semantic segmentation,” Comput. Vis. Image Underst., vol. 205, p. 103167, 2021.
  65. S. Uhlemeyer, M. Rottmann, and H. Gottschalk, “Towards unsupervised open world semantic segmentation,” in Uncertainty in Artificial Intelligence, 2022.
  66. Y. Fu, X. Wang, H. Dong, Y. Jiang, M. Wang, X. Xue, and L. Sigal, “Vocabulary-informed zero-shot and open-set learning,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 42, no. 12, 2020.
  67. Y. Xian, C. H. Lampert, B. Schiele, and Z. Akata, “Zero-shot learning - A comprehensive evaluation of the good, the bad and the ugly,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 41, no. 9, 2019.
  68. T. Salimans, I. J. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen, “Improved techniques for training gans,” in Neural Information Processing Systems 2016, 2016, pp. 2226–2234.
  69. Y. Du and I. Mordatch, “Implicit generation and modeling with energy based models,” in Neural Information Processing Systems 2019, NeurIPS 2019, 2019.
  70. Y. Song and S. Ermon, “Generative modeling by estimating gradients of the data distribution,” in Neural Information Processing Systems 2019, NeurIPS 2019, 2019, pp. 11 895–11 907.
  71. M. Grcić, I. Grubišić, and S. Šegvić, “Densely connected normalizing flows,” in Neural Information Processing Systems, 2021.
  72. M. Grcić, P. Bevandić, Z. Kalafatić, and S. Šegvić, “Dense out-of-distribution detection by robust learning on synthetic negative data,” Sensors, 2024.
  73. “Source code: https://github.com/matejgrcic/DenseHybrid.”
  74. D. Hendrycks, S. Basart, M. Mazeika, A. Zou, J. Kwon, M. Mostajabi, J. Steinhardt, and D. Song, “Scaling out-of-distribution detection for real-world settings,” in International Conference on Machine Learning, ICML, 2022.
  75. T. Lin, M. Maire, S. J. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick, “Microsoft COCO: common objects in context,” in European Conference on Computer Vision, 2014.
  76. B. Hariharan, P. Arbelaez, L. D. Bourdev, S. Maji, and J. Malik, “Semantic contours from inverse detectors,” in IEEE International Conference on Computer Vision, ICCV, 2011.
  77. K. Lis, S. Honari, P. Fua, and M. Salzmann, “Detecting road obstacles by erasing them,” CoRR, vol. abs/2012.13633, 2020.
  78. S. Jung, J. Lee, D. Gwak, S. Choi, and J. Choo, “Standardized max logits: A simple yet effective approach for identifying unexpected road obstacles in urban-scene segmentation,” in International Conference on Computer Vision, ICCV, 2021.
  79. A. Malinin and M. J. F. Gales, “Predictive uncertainty estimation via prior networks,” in Neural Information Processing Systems, 2018.
  80. Y. Zhu, K. Sapra, F. A. Reda, K. J. Shih, S. D. Newsam, A. Tao, and B. Catanzaro, “Improving semantic segmentation via video propagation and label relaxation,” in IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2019.
  81. I. Kreso, J. Krapac, and S. Segvic, “Efficient ladder-style densenets for semantic segmentation of large images,” IEEE Trans. Intell. Transp. Syst., vol. 22, 2021.
  82. K. Lee, K. Lee, H. Lee, and J. Shin, “A simple unified framework for detecting out-of-distribution samples and adversarial attacks,” in Neural Information Processing Systems, NeurIPS, 2018.
  83. J. Steinhardt and P. Liang, “Unsupervised risk estimation using only conditional independence structure,” in Neural Information Processing Systems 2016, 2016, pp. 3657–3665.
  84. P. Oza and V. M. Patel, “C2ae: Class conditioned auto-encoder for open-set recognition,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2019.
  85. G. Franchi, A. Bursuc, E. Aldea, S. Dubuisson, and I. Bloch, “TRADI: tracking deep neural network weight distributions,” in 16th European Conference on Computer Vision, ECCV, 2020.
  86. Y. Sun, C. Guo, and Y. Li, “React: Out-of-distribution detection with rectified activations,” in NeurIPS, 2021.
  87. S. Fort, J. Ren, and B. Lakshminarayanan, “Exploring the limits of out-of-distribution detection,” in Neural Information Processing Systems, NeurIPS 2021, 2021, pp. 7068–7081.
  88. M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke, S. Roth, and B. Schiele, “The cityscapes dataset for semantic urban scene understanding,” in IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2016.
  89. G. Neuhold, T. Ollmann, S. R. Bulò, and P. Kontschieder, “The mapillary vistas dataset for semantic understanding of street scenes,” in IEEE International Conference on Computer Vision, 2017.
  90. A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards deep learning models resistant to adversarial attacks,” in International Conference on Learning Representations, ICLR, 2018.
Citations (4)

Summary

We haven't generated a summary for this paper yet.