Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

DiME: Maximizing Mutual Information by a Difference of Matrix-Based Entropies (2301.08164v3)

Published 19 Jan 2023 in cs.LG, cs.IT, and math.IT

Abstract: We introduce an information-theoretic quantity with similar properties to mutual information that can be estimated from data without making explicit assumptions on the underlying distribution. This quantity is based on a recently proposed matrix-based entropy that uses the eigenvalues of a normalized Gram matrix to compute an estimate of the eigenvalues of an uncentered covariance operator in a reproducing kernel Hilbert space. We show that a difference of matrix-based entropies (DiME) is well suited for problems involving the maximization of mutual information between random variables. While many methods for such tasks can lead to trivial solutions, DiME naturally penalizes such outcomes. We compare DiME to several baseline estimators of mutual information on a toy Gaussian dataset. We provide examples of use cases for DiME, such as latent factor disentanglement and a multiview representation learning problem where DiME is used to learn a shared representation among views with high mutual information.

Citations (9)

Summary

We haven't generated a summary for this paper yet.