Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Unified Architecture for Dynamic Role Allocation and Collaborative Task Planning in Mixed Human-Robot Teams (2301.08038v2)

Published 19 Jan 2023 in cs.RO, cs.AI, cs.HC, and cs.MA

Abstract: The growing deployment of human-robot collaborative processes in several industrial applications, such as handling, welding, and assembly, unfolds the pursuit of systems which are able to manage large heterogeneous teams and, at the same time, monitor the execution of complex tasks. In this paper, we present a novel architecture for dynamic role allocation and collaborative task planning in a mixed human-robot team of arbitrary size. The architecture capitalizes on a centralized reactive and modular task-agnostic planning method based on Behavior Trees (BTs), in charge of actions scheduling, while the allocation problem is formulated through a Mixed-Integer Linear Program (MILP), that assigns dynamically individual roles or collaborations to the agents of the team. Different metrics used as MILP cost allow the architecture to favor various aspects of the collaboration (e.g. makespan, ergonomics, human preferences). Human preference are identified through a negotiation phase, in which, an human agent can accept/refuse to execute the assigned task.In addition, bilateral communication between humans and the system is achieved through an Augmented Reality (AR) custom user interface that provides intuitive functionalities to assist and coordinate workers in different action phases. The computational complexity of the proposed methodology outperforms literature approaches in industrial sized jobs and teams (problems up to 50 actions and 20 agents in the team with collaborations are solved within 1 s). The different allocated roles, as the cost functions change, highlights the flexibility of the architecture to several production requirements. Finally, the subjective evaluation demonstrating the high usability level and the suitability for the targeted scenario.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (51)
  1. A. Campbell and A. S. Wu, “Multi-agent role allocation: issues, approaches, and multiple perspectives,” Autonomous agents and multi-agent systems, vol. 22, no. 2, pp. 317–355, 2011.
  2. A. Ajoudani, A. M. Zanchettin, S. Ivaldi, A. Albu-Schäffer, K. Kosuge, and O. Khatib, “Progress and prospects of the human–robot collaboration,” Autonomous Robots, vol. 42, no. 5, pp. 957–975, 2018.
  3. V. Villani, F. Pini, F. Leali, and C. Secchi, “Survey on human–robot collaboration in industrial settings: Safety, intuitive interfaces and applications,” Mechatronics, vol. 55, pp. 248–266, 2018.
  4. A. Farinelli, L. Iocchi, and D. Nardi, “Multirobot systems: a classification focused on coordination,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 34, no. 5, pp. 2015–2028, Oct 2004.
  5. H. Kitano and S. Tadokoro, “Robocup rescue: A grand challenge for multiagent and intelligent systems,” AI magazine, vol. 22, no. 1, p. 39, 2001.
  6. M. Tambe, “Towards flexible teamwork,” Journal of artificial intelligence research, vol. 7, pp. 83–124, 1997.
  7. P. Stone and M. Veloso, “Task decomposition, dynamic role assignment, and low-bandwidth communication for real-time strategic teamwork,” Artificial Intelligence, vol. 110, no. 2, pp. 241 – 273, 1999.
  8. B. P. Gerkey and M. J. Matarić, “On role allocation in robocup,” in Robot Soccer World Cup.   Springer, 2003, pp. 43–53.
  9. G. Notomista, S. Mayya, Y. Emam, C. Kroninger, A. Bohannon, S. Hutchinson, and M. Egerstedt, “A resilient and energy-aware task allocation framework for heterogeneous multirobot systems,” IEEE Transactions on Robotics, vol. 38, no. 1, pp. 159–179, 2022.
  10. F. Chen, K. Sekiyama, F. Cannella, and T. Fukuda, “Optimal subtask allocation for human and robot collaboration within hybrid assembly system,” IEEE Transactions on Automation Science and Engineering, vol. 11, no. 4, pp. 1065–1075, 2014.
  11. L. Johannsmeier and S. Haddadin, “A hierarchical human-robot interaction-planning framework for task allocation in collaborative industrial assembly processes,” IEEE Robotics and Automation Letters, vol. 2, no. 1, pp. 41–48, Jan 2017.
  12. N. Nikolakis, N. Kousi, G. Michalos, and S. Makris, “Dynamic scheduling of shared human-robot manufacturing operations,” Procedia CIRP, vol. 72, pp. 9–14, 2018.
  13. G. Bruno and D. Antonelli, “Dynamic task classification and assignment for the management of human-robot collaborative teams in workcells,” The International Journal of Advanced Manufacturing Technology, vol. 98, no. 9, pp. 2415–2427, 2018.
  14. G. Michalos, J. Spiliotopoulos, S. Makris, and G. Chryssolouris, “A method for planning human robot shared tasks,” CIRP journal of manufacturing science and technology, vol. 22, pp. 76–90, 2018.
  15. M. C. Gombolay, R. J. Wilcox, and J. A. Shah, “Fast scheduling of robot teams performing tasks with temporospatial constraints,” IEEE Transactions on Robotics, vol. 34, no. 1, pp. 220–239, 2018.
  16. A. Casalino, A. M. Zanchettin, L. Piroddi, and P. Rocco, “Optimal scheduling of human–robot collaborative assembly operations with time petri nets,” IEEE Transactions on Automation Science and Engineering, vol. 18, no. 1, pp. 70–84, 2021.
  17. I. El Makrini, K. Merckaert, J. De Winter, D. Lefeber, and B. Vanderborght, “Task allocation for improved ergonomics in human-robot collaborative assembly,” Interaction Studies, vol. 20, no. 1, pp. 102–133, 2019.
  18. A. Pupa, W. Van Dijk, and C. Secchi, “A human-centered dynamic scheduling architecture for collaborative application,” IEEE Robotics and Automation Letters, vol. 6, no. 3, pp. 4736–4743, 2021.
  19. K. Darvish, E. Simetti, F. Mastrogiovanni, and G. Casalino, “A hierarchical architecture for human–robot cooperation processes,” IEEE Transactions on Robotics, vol. 37, no. 2, pp. 567–586, 2021.
  20. M.-L. Lee, S. Behdad, X. Liang, and M. Zheng, “Task allocation and planning for product disassembly with human–robot collaboration,” Robotics and Computer-Integrated Manufacturing, vol. 76, 2022.
  21. B. P. Gerkey and M. J. Matarić, “A formal analysis and taxonomy of task allocation in multi-robot systems,” The International Journal of Robotics Research, vol. 23, no. 9, pp. 939–954, 2004.
  22. G. A. Korsah, A. Stentz, and M. B. Dias, “A comprehensive taxonomy for multi-robot task allocation,” The International Journal of Robotics Research, vol. 32, no. 12, pp. 1495–1512, 2013.
  23. C. Ferreira, G. Figueira, and P. Amorim, “Scheduling human-robot teams in collaborative working cells,” International Journal of Production Economics, vol. 235, p. 108094, 2021.
  24. M. C. Gombolay, C. Huang, and J. Shah, “Coordination of human-robot teaming with human task preferences,” in 2015 AAAI Fall Symposium Series, 2015.
  25. S. M. Rahman and Y. Wang, “Mutual trust-based subtask allocation for human–robot collaboration in flexible lightweight assembly in manufacturing,” Mechatronics, vol. 54, pp. 94–109, 2018.
  26. K. Li, Q. Liu, W. Xu, J. Liu, Z. Zhou, and H. Feng, “Sequence planning considering human fatigue for human-robot collaboration in disassembly,” Procedia CIRP, vol. 83, pp. 95–104, 2019.
  27. K. P. Hawkins, S. Bansal, N. N. Vo, and A. F. Bobick, “Anticipating human actions for collaboration in the presence of task and sensor uncertainty,” in 2014 IEEE International Conference on Robotics and Automation (ICRA), 2014, pp. 2215–2222.
  28. K. Darvish, F. Wanderlingh, B. Bruno, E. Simetti, F. Mastrogiovanni, and G. Casalino, “Flexible human–robot cooperation models for assisted shop-floor tasks,” Mechatronics, vol. 51, pp. 97–114, 2018.
  29. E. Merlo, E. Lamon, F. Fusaro, M. Lorenzini, A. Carfi, F. Mastrogiovanni, and A. Ajoudani, “Dynamic human-robot role allocation based on human ergonomics risk prediction and robot actions adaptation,” in 2022 International Conference on Robotics and Automation (ICRA), 2022, pp. 2825–2831.
  30. E. Lamon, A. De Franco, L. Peternel, and A. Ajoudani, “A capability-aware role allocation approach to industrial assembly tasks,” IEEE Robotics and Automation Letters, vol. 4, no. 4, pp. 3378–3385, 2019.
  31. R. Caccavale and A. Finzi, “Flexible task execution and attentional regulations in human-robot interaction,” IEEE Transactions on Cognitive and Developmental Systems, vol. 9, no. 1, pp. 68–79, 2017.
  32. H. Nguyen, M. Ciocarlie, K. Hsiao, and C. C. Kemp, “Ros commander (rosco): Behavior creation for home robots,” in 2013 IEEE International Conference on Robotics and Automation, 2013, pp. 467–474.
  33. C. Paxton, A. Hundt, F. Jonathan, K. Guerin, and G. D. Hager, “Costar: Instructing collaborative robots with behavior trees and vision,” in 2017 IEEE International Conference on Robotics and Automation (ICRA), 2017, pp. 564–571.
  34. O. Biggar, M. Zamani, and I. Shames, “On modularity in reactive control architectures, with an application to formal verification,” ACM Trans. Cyber-Phys. Syst., vol. 6, no. 2, apr 2022.
  35. I. El Makrini, M. Omidi, F. Fusaro, E. Lamon, A. Ajoudani, and B. Vanderborght, “A hierarchical finite-state machine-based task allocation framework for human-robot collaborative assembly tasks,” in 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2022, accepted.
  36. P. Tsarouchi, A.-S. Matthaiakis, S. Makris, and G. Chryssolouris, “On a human-robot collaboration in an assembly cell,” International Journal of Computer Integrated Manufacturing, vol. 30, no. 6, pp. 580–589, 2017.
  37. C. Paxton, F. Jonathan, A. Hundt, B. Mutlu, and G. D. Hager, “Evaluating methods for end-user creation of robot task plans,” in 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2018, pp. 6086–6092.
  38. F. Fusaro, E. Lamon, E. D. Momi, and A. Ajoudani, “An integrated dynamic method for allocating roles and planning tasks for mixed human-robot teams,” in 2021 30th IEEE International Conference on Robot & Human Interactive Communication (RO-MAN), 2021.
  39. M. Colledanchise, A. Marzinotto, D. V. Dimarogonas, and P. Oegren, “The advantages of using behavior trees in mult-robot systems,” in Proceedings of ISR 2016: 47st International Symposium on Robotics, 2016, pp. 1–8.
  40. M. Cramer, K. Kellens, and E. Demeester, “Probabilistic decision model for adaptive task planning in human-robot collaborative assembly based on designer and operator intents,” IEEE Robotics and Automation Letters, vol. 6, no. 4, pp. 7325–7332, 2021.
  41. S. Hignett and L. McAtamney, “Rapid entire body assessment (reba),” Applied ergonomics, vol. 31, no. 2, pp. 201–205, 2000.
  42. T. R. Waters, V. Putz-Anderson, A. Garg, and L. J. Fine, “Revised niosh equation for the design and evaluation of manual lifting tasks,” Ergonomics, vol. 36, no. 7, pp. 749–776, 1993.
  43. K. Schaub, G. Caragnano, B. Britzke, and R. Bruder, “The european assembly worksheet,” Theoretical Issues in Ergonomics Science, vol. 14, no. 6, pp. 616–639, 2013.
  44. A. D. Dragan, K. C. Lee, and S. S. Srinivasa, “Legibility and predictability of robot motion,” in Proceedings of International Conference on Human-Robot Interaction (HRI).   Tokyo, Japan: IEEE, 2013.
  45. D. Héraïz-Bekkis, G. Ganesh, E. Yoshida, and N. Yamanobe, “Robot Movement Uncertainty Determines Human Discomfort in Co-worker Scenarios,” in Proceedings of International Conference on Control, Automation and Robotics (ICCAR).   Singapore: IEEE, 4 2020.
  46. D. Kulić and E. Croft, “Physiological and subjective responses to articulated robot motion,” Robotica, vol. 25, no. 1, pp. 13–27, 1 2007.
  47. M. Lagomarsino, M. Lorenzini, E. De Momi, and A. Ajoudani, “Robot trajectory adaptation to optimise the trade-off between human cognitive ergonomics and workplace productivity in collaborative tasks,” in 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2022, pp. 663–669.
  48. T. Arai, R. Kato, and M. Fujita, “Assessment of operator stress induced by robot collaboration in assembly,” CIRP annals, 2010.
  49. M. Bergman and M. van Zandbeek, “Close encounters of the fifth kind? affective impact of speed and distance of a collaborative industrial robot on humans,” Human Friendly Robotics, vol. 7, pp. 127–137, 6 2019.
  50. S. G. Hart and L. E. Staveland, “Development of nasa-tlx (task load index): Results of empirical and theoretical research,” in Advances in psychology.   Elsevier, 1988, vol. 52, pp. 139–183.
  51. B. L. Welch, “On the comparison of several mean values: an alternative approach,” Biometrika, vol. 38, no. 3/4, pp. 330–336, 1951.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Edoardo Lamon (17 papers)
  2. Fabio Fusaro (4 papers)
  3. Elena De Momi (40 papers)
  4. Arash Ajoudani (63 papers)

Summary

We haven't generated a summary for this paper yet.