Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Principal Stratification with Time-to-Event Outcomes (2301.07672v1)

Published 18 Jan 2023 in stat.ME and stat.AP

Abstract: Post-randomization events, also known as intercurrent events, such as treatment noncompliance and censoring due to a terminal event, are common in clinical trials. Principal stratification is a framework for causal inference in the presence of intercurrent events. Despite the extensive existing literature, there lacks generally applicable and accessible methods for principal stratification analysis with time-to-event outcomes. In this paper, we specify two causal estimands for time-to-event outcomes in principal stratification. For estimation, we adopt the general strategy of latent mixture modeling and derive the corresponding likelihood function. For computational convenience, we illustrate the general strategy with a mixture of Bayesian parametric Weibull-Cox proportional model for the outcome. We utilize the Stan programming language to obtain automatic posterior sampling of the model parameters via the Hamiltonian Monte Carlo. We provide the analytical forms of the causal estimands as functions of the model parameters and an alternative numerical method when analytical forms are not available. We apply the proposed method to the ADAPTABLE trial to evaluate the causal effect of taking 81 mg versus 325 mg aspirin on the risk of major adverse cardiovascular events.

Citations (2)

Summary

We haven't generated a summary for this paper yet.