Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exact emergent higher-form symmetries in bosonic lattice models (2301.05261v5)

Published 12 Jan 2023 in cond-mat.str-el and hep-th

Abstract: Although condensed matter systems usually do not have higher-form symmetries, we show that, unlike 0-form symmetry, higher-form symmetries can emerge as exact symmetries at low energies and long distances. In particular, emergent higher-form symmetries at zero temperature are robust to arbitrary local UV perturbations in the thermodynamic limit. This result is true for both invertible and non-invertible higher-form symmetries. Therefore, emergent higher-form symmetries are $\textit{exact emergent symmetries}$: they are not UV symmetries but constrain low-energy dynamics as if they were. Since phases of matter are defined in the thermodynamic limit, this implies that a UV theory without higher-form symmetries can have phases characterized by exact emergent higher-form symmetries. We demonstrate this in three lattice models, the quantum clock model and emergent ${\mathbb{Z}_N}$ and ${U(1)}$ ${p}$-gauge theory, finding regions of parameter space with exact emergent (anomalous) higher-form symmetries. Furthermore, we perform a generalized Landau analysis of a 2+1D lattice model that gives rise to $\mathbb{Z}_2$ gauge theory. Using exact emergent 1-form symmetries accompanied by their own energy/length scales, we show that the transition between the deconfined and Higgs/confined phases is continuous and equivalent to the spontaneous symmetry-breaking transition of a $\mathbb{Z}_2$ symmetry, even though the lattice model has no symmetry. Also, we show that this transition line must $\textit{always}$ contain two parts separated by multi-critical points or other phase transitions. We discuss the physical consequences of exact emergent higher-form symmetries and contrast them to emergent ${0}$-form symmetries. Lastly, we show that emergent 1-form symmetries are no longer exact at finite temperatures, but emergent $p$-form symmetries with ${p\geq 2}$ are.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (95)
  1. Z. Nussinov and G. Ortiz, Sufficient symmetry conditions for topological quantum order, Proc. Natl. Acad. Sci. U.S.A. 106, 16944 (2009a), arXiv:cond-mat/0605316 .
  2. Z. Nussinov and G. Ortiz, A symmetry principle for topological quantum order, Ann. Phys. 324, 977 (2009b), arXiv:cond-mat/0702377 .
  3. E. Sharpe, Notes on generalized global symmetries in QFT, Fortschr. Phys. 63, 659 (2015), arXiv:1508.04770 .
  4. F. Benini, C. Córdova, and P.-S. Hsin, On 2-group global symmetries and their anomalies, J. High Energ. Phys. 2019 (3), 118, arXiv:1803.09336 .
  5. C. Córdova, T. T. Dumitrescu, and K. Intriligator, Exploring 2-group global symmetries, J. High Energ. Phys. 2019 (2), 184, arXiv:1802.04790 .
  6. A. Kapustin and L. Spodyneiko, Hohenberg-Mermin-Wagner-type theorems and dipole symmetry, Phys. Rev. B 106, 245125 (2022), arXiv:2208.09056 .
  7. M. Qi, L. Radzihovsky, and M. Hermele, Fracton phases via exotic higher-form symmetry-breaking, Ann. Phys. 424, 168360 (2021), arXiv:2010.02254 .
  8. L. Bhardwaj and Y. Tachikawa, On finite symmetries and their gauging in two dimensions, J. High Energ. Phys. 2018 (3), 189, arXiv:1704.02330 .
  9. R. Thorngren and Y. Wang, Fusion Category Symmetry I: Anomaly In-Flow and Gapped Phases (2019), arXiv:1912.02817 .
  10. H. Moradi, S. Faroogh Moosavian, and A. Tiwari, Topological holography: Towards a unification of Landau and beyond-Landau physics, SciPost Phys. Core 6, 066 (2023), arXiv:2207.10712 .
  11. D. S. Freed, G. W. Moore, and C. Teleman, Topological symmetry in quantum field theory (2022), arXiv:2209.07471 .
  12. J. McGreevy, Generalized Symmetries in Condensed Matter, Annu. Rev. Condens. Matter Phys. 14, 57 (2023), arXiv:2204.03045 .
  13. X.-G. Wen, Topological orders in rigid states, Int. J. Mod. Phys. B 04, 239 (1990).
  14. L. D. Landau, Theory of phase transformations I, Phys. Z. Sowjetunion 11, 26 (1937).
  15. V. L. Ginzburg and L. D. Landau, On the theory of superconductivity, Zh. Eksp. Teor. Fiz. 20, 1064 (1950).
  16. X.-G. Wen, Emergent (anomalous) higher symmetries from topological order and from dynamical electromagnetic field in condensed matter systems, Phys. Rev. B 99, 205139 (2019), arXiv:1812.02517 .
  17. P.-S. Hsin, H. T. Lam, and N. Seiberg, Comments on one-form global symmetries and their gauging in 3d and 4d, SciPost Phys. 6, 039 (2019), arXiv:1812.04716 .
  18. P.-S. Hsin and A. Turzillo, Symmetry-enriched quantum spin liquids in (3+1)⁢d31𝑑{(3+1)d}( 3 + 1 ) italic_d, J. High Energ. Phys. 2020 (9), 22, arXiv:1904.11550 .
  19. S. D. Pace, Emergent generalized symmetries in ordered phases (2023), arXiv:2308.05730 .
  20. A. Kovner and B. Rosenstein, New look at QED4subscriptQED4{\mathrm{QED}}_{4}roman_QED start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT: the photon as a Goldstone boson and the topological interpretation of electric charge, Phys. Rev. D 49, 5571 (1994), arXiv:hep-th/9210154 .
  21. E. Lake, Higher-form symmetries and spontaneous symmetry breaking (2018), arXiv:1802.07747 .
  22. D. Hofman and N. Iqbal, Goldstone modes and photonization for higher form symmetries, SciPost Phys. 6, 006 (2019), arXiv:1802.09512 .
  23. K.-S. Kim and Y. Hirono, Higher-form symmetries and d𝑑ditalic_d-wave superconductors from doped Mott insulators, Phys. Rev. B 100, 085142 (2019), arXiv:1905.04617 .
  24. Y. Hidaka, Y. Hirono, and R. Yokokura, Counting Nambu-Goldstone Modes of Higher-Form Global Symmetries, Phys. Rev. Lett. 126, 071601 (2021), arXiv:2007.15901 .
  25. N. Yamamoto and R. Yokokura, Topological mass generation in gapless systems, Phys. Rev. D 104, 025010 (2021), arXiv:2009.07621 .
  26. N. Iqbal and J. McGreevy, Mean string field theory: Landau-Ginzburg theory for 1-form symmetries, SciPost Phys. 13, 114 (2022), arXiv:2106.12610 .
  27. R. Thorngren and C. von Keyserlingk, Higher SPT’s and a generalization of anomaly in-flow (2015), arXiv:1511.02929 .
  28. B. Yoshida, Topological phases with generalized global symmetries, Phys. Rev. B 93, 155131 (2016), arXiv:1508.03468 .
  29. L. Tsui and X.-G. Wen, Lattice models that realize ℤnsubscriptℤ𝑛{\mathbb{Z}}_{n}blackboard_Z start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT-1 symmetry-protected topological states for even n𝑛nitalic_n, Phys. Rev. B 101, 035101 (2020), arXiv:1908.02613 .
  30. S. D. Pace and X.-G. Wen, Emergent higher-symmetry protected topological orders in the confined phase of U⁢(1)𝑈1U(1)italic_U ( 1 ) gauge theory, Phys. Rev. B 107, 075112 (2023), arXiv:2207.03544 .
  31. D. Foerster, H. Nielsen, and M. Ninomiya, Dynamical stability of local gauge symmetry creation of light from chaos, Phys. Lett. B 94, 135 (1980).
  32. M. B. Hastings and X.-G. Wen, Quasiadiabatic continuation of quantum states: The stability of topological ground-state degeneracy and emergent gauge invariance, Phys. Rev. B 72, 045141 (2005), arXiv:cond-mat/0503554 .
  33. E. Poppitz and Y. Shang, “Light from chaos” in two dimensions, International Journal of Modern Physics A 23, 4545 (2008), arXiv:0801.0587 .
  34. A. M. Somoza, P. Serna, and A. Nahum, Self-Dual Criticality in Three-Dimensional ℤ2subscriptℤ2{\mathbb{Z}}_{2}blackboard_Z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT Gauge Theory with Matter, Phys. Rev. X 11, 041008 (2021), arXiv:2012.15845 .
  35. C. Córdova, K. Ohmori, and T. Rudelius, Generalized symmetry breaking scales and weak gravity conjectures, J. High Energ. Phys. 2022 (11), 154, arXiv:2202.05866 .
  36. Z.-P. Cian, M. Hafezi, and M. Barkeshli, Extracting Wilson loop operators and fractional statistics from a single bulk ground state (2022), arXiv:2209.14302 .
  37. Y. Hidaka and D. Kondo, Emergent higher-form symmetry in Higgs phases with superfluidity (2022), arXiv:2210.11492 .
  38. A. Cherman and T. Jacobson, Emergent 1-form symmetries (2023), arXiv:2304.13751 .
  39. A. Chatterjee and X.-G. Wen, Symmetry as a shadow of topological order and a derivation of topological holographic principle, Phys. Rev. B 107, 155136 (2023), arXiv:2203.03596 .
  40. R. B. Laughlin and D. Pines, The Theory of Everything, Proc. Natl. Acad. Sci. U.S.A. 97, 28 (2000).
  41. S. D. Pace and X.-G. Wen, Position-dependent excitations and UV/IR mixing in the ℤNsubscriptℤ𝑁{\mathbb{Z}}_{N}blackboard_Z start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT rank-2 toric code and its low-energy effective field theory, Phys. Rev. B 106, 045145 (2022), arXiv:2204.07111 .
  42. S. Bravyi, M. B. Hastings, and S. Michalakis, Topological quantum order: stability under local perturbations, J. Math. Phys. 51, 093512 (2010), arXiv:1001.0344 .
  43. C. Yin and A. Lucas, Prethermalization and the Local Robustness of Gapped Systems, Phys. Rev. Lett. 131, 050402 (2023), arXiv:2209.11242 .
  44. S. Moudgalya and O. I. Motrunich, From symmetries to commutant algebras in standard Hamiltonians, Ann. Phys. , 169384 (2023a), arXiv:2209.03370 .
  45. S. Moudgalya and O. I. Motrunich, Numerical methods for detecting symmetries and commutant algebras, Phys. Rev. B 107, 224312 (2023b), arXiv:2302.03028 .
  46. K. Roumpedakis, S. Seifnashri, and S.-H. Shao, Higher Gauging and Non-invertible Condensation Defects, Commun. Math. Phys. 401, 3043 (2023), arXiv:2204.02407 .
  47. L. Bhardwaj, S. Schäfer-Nameki, and J. Wu, Universal Non-Invertible Symmetries, Fortschr. Phys. 70, 2200143 (2022), arXiv:2208.05973 .
  48. C. Delcamp and A. Tiwari, Higher categorical symmetries and gauging in two-dimensional spin systems (2023), arXiv:2301.01259 .
  49. L. Bhardwaj and S. Schäfer-Nameki, Generalized Charges, Part I: Invertible Symmetries and Higher Representations (2023a), arXiv:2304.02660 .
  50. T. Bartsch, M. Bullimore, and A. Grigoletto, Higher representations for extended operators (2023), arXiv:2304.03789 .
  51. L. Bhardwaj and S. Schäfer-Nameki, Generalized Charges, Part II: Non-Invertible Symmetries and the Symmetry TFT (2023b), arXiv:2305.17159 .
  52. S.-S. Lee and P. A. Lee, Emergent U(1) gauge theory with fractionalized boson/fermion from the Bose condensation of excitons in a multiband insulator, Phys. Rev. B 72, 235104 (2005), arXiv:cond-mat/0507191 .
  53. F. Wu, Y. Deng, and N. Prokof’ev, Phase diagram of the toric code model in a parallel magnetic field, Phys. Rev. B 85, 195104 (2012), arXiv:1201.6409 .
  54. I. Hubač and S. Wilson, Brillouin-Wigner Perturbation Theory, in Brillouin-Wigner Methods for Many-Body Systems (Springer, 2010) pp. 37–68.
  55. S. Bravyi, D. P. DiVincenzo, and D. Loss, Schrieffer-Wolff transformation for quantum many-body systems, Ann. Phys. 326, 2793 (2011), arXiv:1105.0675 .
  56. L. Kong and H. Zheng, Categories of quantum liquids III,   (2022), arXiv:2201.05726 .
  57. W. Ji and X.-G. Wen, Categorical symmetry and noninvertible anomaly in symmetry-breaking and topological phase transitions, Phys. Rev. Res. 2, 033417 (2020), arXiv:1912.13492 .
  58. W. Ji and X.-G. Wen, Non-invertible anomalies and mapping-class-group transformation of anomalous partition functions, Phys. Rev. Research 1, 033054 (2019), arXiv:1905.13279 .
  59. X.-G. Wen, Classifying gauge anomalies through symmetry-protected trivial orders and classifying gravitational anomalies through topological orders, Phys. Rev. D 88, 045013 (2013), arXiv:1303.1803 .
  60. A. Kitaev and L. Kong, Models for gapped boundaries and domain walls, Commun. Math. Phys. 313, 351 (2012), arXiv:1104.5047 .
  61. X.-G. Wen, Gapless boundary excitations in the quantum hall states and in the chiral spin states, Phys. Rev. B 43, 11025 (1991a).
  62. L. Delacrétaz, D. Hofman, and G. Mathys, Superfluids as higher-form anomalies, SciPost Phys. 8, 047 (2020), arXiv:1908.06977 .
  63. A. Kapustin and N. Seiberg, Coupling a QFT to a TQFT and duality, J. High Energ. Phys. 2014 (4), 1, arXiv:1401.0740 .
  64. N. Iqbal and J. McGreevy, Toward a 3d Ising model with a weakly-coupled string theory dual, SciPost Phys. 9, 019 (2020), arXiv:2003.04349 .
  65. A. Kitaev, Fault-tolerant quantum computation by anyons, Ann. Phys. 303, 2 (2003), arXiv:quant-ph/9707021 .
  66. E. Fradkin and S. H. Shenker, Phase diagrams of lattice gauge theories with higgs fields, Phys. Rev. D 19, 3682 (1979).
  67. J. Vidal, S. Dusuel, and K. P. Schmidt, Low-energy effective theory of the toric code model in a parallel magnetic field, Phys. Rev. B 79, 033109 (2009), arXiv:0807.0487 .
  68. M. Iqbal and N. Schuch, Entanglement Order Parameters and Critical Behavior for Topological Phase Transitions and Beyond, Phys. Rev. X 11, 041014 (2021), arXiv:2011.06611 .
  69. C. Bonati, A. Pelissetto, and E. Vicari, Multicritical point of the three-dimensional ℤ2subscriptℤ2{\mathbb{Z}}_{2}blackboard_Z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT gauge Higgs model, Phys. Rev. B 105, 165138 (2022), arXiv:2112.01824 .
  70. N. Read and S. Sachdev, Large-N𝑁Nitalic_N expansion for frustrated quantum antiferromagnets, Phys. Rev. Lett.  66, 1773 (1991).
  71. X.-G. Wen, Mean-field theory of spin-liquid states with finite energy gap and topological orders, Phys. Rev. B 44, 2664 (1991b).
  72. C. Córdova and K. Ohmori, Anomaly Obstructions to Symmetry Preserving Gapped Phases (2020), arXiv:1910.04962 .
  73. T. Banks and E. Rabinovici, Finite-temperature behavior of the lattice abelian Higgs model, Nucl. Phys. B. 160, 349 (1979).
  74. S. Weinberg, Approximate Symmetries and Pseudo-Goldstone Bosons, Phys. Rev. Lett. 29, 1698 (1972).
  75. S. D. Pace and Y. L. Liu, Topological aspects of brane fields: solitons and higher-form symmetries (2023), arXiv:2311.09293 .
  76. D. V. Else and T. Senthil, Critical drag as a mechanism for resistivity, Phys. Rev. B 104, 205132 (2021), arXiv:2106.15623 .
  77. C. G. Callan Jr. and J. A. Harvey, Anomalies and fermion zero modes on strings and domain walls, Nucl. Phys. B 250, 427 (1985).
  78. A. Kapustin, Bosonic Topological Insulators and Paramagnets: A view from cobordisms,  (2014), arXiv:1404.6659 .
  79. X.-G. Wen, A theory of 2+1D bosonic topological orders, Nat. Sci. Rev. 3, 68 (2015), arXiv:1506.05768 .
  80. M. Serbyn, D. A. Abanin, and Z. Papić, Quantum many-body scars and weak breaking of ergodicity, Nat. Phys. 17, 675 (2021), arXiv:2011.09486 .
  81. C. Castelnovo and C. Chamon, Topological order in a three-dimensional toric code at finite temperature, Phys. Rev. B 78, 155120 (2008), arXiv:0804.3591 .
  82. R. Alicki, M. Fannes, and M. Horodecki, On thermalization in Kitaev’s 2D model, Journal of Physics A: Mathematical and Theoretical 42, 065303 (2009), arXiv:0810.4584 .
  83. L. Savary and L. Balents, Quantum spin liquids: a review, Reports on Progress in Physics 80, 016502 (2016), arXiv:1601.03742 .
  84. M. J. Gingras and P. A. McClarty, Quantum spin ice: a search for gapless quantum spin liquids in pyrochlore magnets, Reports on Progress in Physics 77, 056501 (2014), arXiv:1311.1817 .
  85. M. Hermele, M. P. A. Fisher, and L. Balents, Pyrochlore photons: The U(1) spin liquid in a S=1/2 three-dimensional frustrated magnet, Phys. Rev. B 69, 064404 (2004), arXiv:cond-mat/0305401 .
  86. O. Benton, O. Sikora, and N. Shannon, Seeing the light: Experimental signatures of emergent electromagnetism in a quantum spin ice, Phys. Rev. B 86, 075154 (2012), arXiv:1204.1325 .
  87. T. Sulejmanpasic and C. Gattringer, Abelian gauge theories on the lattice: θ𝜃\thetaitalic_θ-Terms and compact gauge theory with(out) monopoles, Nucl. Phys. B 943, 114616 (2019), arXiv:1901.02637 .
  88. Z. Wan, J. Wang, and X.-G. Wen, (3+1)⁢d31d(3+1)\mathrm{d}( 3 + 1 ) roman_d boundaries with gravitational anomaly of (4+1)⁢d41d(4+1)\mathrm{d}( 4 + 1 ) roman_d invertible topological order for branch-independent bosonic systems, Phys. Rev. B 106, 045127 (2022), arXiv:2112.12148 .
  89. K. Slagle and Y. B. Kim, Quantum field theory of X-cube fracton topological order and robust degeneracy from geometry, Phys. Rev. B 96, 195139 (2017), arXiv:1708.04619 .
  90. J. Maldacena, N. Seiberg, and G. Moore, D-brane charges in five-brane backgrounds, J. High Energy Phys. 2001 (10), 005, arXiv:hep-th/0108152 .
  91. T. Hansson, V. Oganesyan, and S. Sondhi, Superconductors are topologically ordered, Ann. Phys. 313, 497 (2004), arXiv:cond-mat/0404327 .
  92. T. Banks and N. Seiberg, Symmetries and strings in field theory and gravity, Phys. Rev. D 83, 084019 (2011), arXiv:1011.5120 .
  93. P. Mathieu and F. Thuillier, Abelian BF theory and Turaev-Viro invariant, J. Math. Phys. 57, 022306 (2016), arXiv:1509.04236 .
  94. E. Witten, On S𝑆Sitalic_S-duality in Abelian Gauge Theory, Selecta Mathematica 1, 383 (1995), arXiv:hep-th/9505186 .
  95. C.-T. Hsieh, Y. Tachikawa, and K. Yonekura, Anomaly inflow and p𝑝pitalic_p-form gauge theories, Commun. Math. Phys. 391, 495 (2022), arXiv:2003.11550 .
Citations (18)

Summary

We haven't generated a summary for this paper yet.