Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 92 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 32 tok/s
GPT-5 High 40 tok/s Pro
GPT-4o 83 tok/s
GPT OSS 120B 467 tok/s Pro
Kimi K2 197 tok/s Pro
2000 character limit reached

Biased random walk on dynamical percolation (2301.05208v3)

Published 12 Jan 2023 in math.PR

Abstract: We study biased random walks on dynamical percolation on $\mathbb{Z}d$. We establish a law of large numbers and an invariance principle for the random walk using regeneration times. Moreover, we verify that the Einstein relation holds, and we investigate the speed of the walk as a function of the bias. While for $d=1$ the speed is increasing, we show that in general this fails in dimension $d \geq 2$. As our main result, we establish two regimes of parameters, separated by an explicit critical curve, such that the speed is either eventually strictly increasing or eventually strictly decreasing. This is in sharp contrast to the biased random walk on a static supercritical percolation cluster, where the speed is known to be eventually zero.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com