Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Modeling the evolution of temporal knowledge graphs with uncertainty (2301.04977v1)

Published 12 Jan 2023 in cs.LG and cs.AI

Abstract: Forecasting future events is a fundamental challenge for temporal knowledge graphs (tKG). As in real life predicting a mean function is most of the time not sufficient, but the question remains how confident can we be about our prediction? Thus, in this work, we will introduce a novel graph neural network architecture (WGP-NN) employing (weighted) Gaussian processes (GP) to jointly model the temporal evolution of the occurrence probability of events and their time-dependent uncertainty. Especially we employ Gaussian processes to model the uncertainty of future links by their ability to predict predictive variance. This is in contrast to existing works, which are only able to express uncertainties in the learned entity representations. Moreover, WGP-NN can model parameter-free complex temporal and structural dynamics of tKGs in continuous time. We further demonstrate the model's state-of-the-art performance on two real-world benchmark datasets.

Summary

We haven't generated a summary for this paper yet.