Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Graph based Environment Representation for Vision-and-Language Navigation in Continuous Environments (2301.04352v1)

Published 11 Jan 2023 in cs.CV, cs.AI, and cs.RO

Abstract: Vision-and-Language Navigation in Continuous Environments (VLN-CE) is a navigation task that requires an agent to follow a language instruction in a realistic environment. The understanding of environments is a crucial part of the VLN-CE task, but existing methods are relatively simple and direct in understanding the environment, without delving into the relationship between language instructions and visual environments. Therefore, we propose a new environment representation in order to solve the above problems. First, we propose an Environment Representation Graph (ERG) through object detection to express the environment in semantic level. This operation enhances the relationship between language and environment. Then, the relational representations of object-object, object-agent in ERG are learned through GCN, so as to obtain a continuous expression about ERG. Sequentially, we combine the ERG expression with object label embeddings to obtain the environment representation. Finally, a new cross-modal attention navigation framework is proposed, incorporating our environment representation and a special loss function dedicated to training ERG. Experimental result shows that our method achieves satisfactory performance in terms of success rate on VLN-CE tasks. Further analysis explains that our method attains better cross-modal matching and strong generalization ability.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Ting Wang (213 papers)
  2. Zongkai Wu (9 papers)
  3. Feiyu Yao (12 papers)
  4. Donglin Wang (103 papers)
Citations (5)

Summary

We haven't generated a summary for this paper yet.