Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Data-driven adjoint-based calibration of port-Hamiltonian systems in time domain (2301.03924v2)

Published 10 Jan 2023 in math.OC, cs.NA, math.DS, and math.NA

Abstract: We present a gradient-based identification algorithm to identify the system matrices of a linear port-Hamiltonian system from given input-output time data. Aiming for a direct structure-preserving approach, we employ techniques from optimal control with ordinary differential equations and define a constrained optimization problem. The input-to-state stability is discussed which is the key step towards the existence of optimal controls. Further, we derive the first-order optimality system taking into account the port-Hamiltonian structure. Indeed, the proposed method preserves the skew-symmetry and positive (semi)-definiteness of the system matrices throughout the optimization iterations. Numerical results with perturbed and unperturbed synthetic data, as well as an example from the PHS benchmark collection demonstrate the feasibility of the approach.

Citations (1)

Summary

We haven't generated a summary for this paper yet.